Answer:
The answer is x = -8
.How long is the minor axis for the ellipse shown below?
(x+4)^2 / 25 + (y-1)^2 / 16 = 1
A: 8
B: 9
C: 12
D: 18
The length of the minor axis for the given ellipse is 8 units. Therefore, the correct option is A: 8.
The equation of the ellipse is in the form \(((x - h)^2) / a^2 + ((y - k)^2) / b^2 = 1\) where (h, k) represents the center of the ellipse, a is the length of the semi-major axis, and b is the length of the semi-minor axis.
Comparing the given equation to the standard form, we can determine that the center of the ellipse is (-4, 1), the length of the semi-major axis is 5, and the length of the semi-minor axis is 4.
The length of the minor axis is twice the length of the semi-minor axis, so the length of the minor axis is 2 * 4 = 8.
To know more about ellipse,
https://brainly.com/question/29020218
#SPJ11
URGENT! Will give brainliest :)
Rosa recorded the height (in centimeters) of a pea plant over a 10-day period for a science experiment. Which equation is the best model of the data?
A. y= 2.2 - (1.1%)
B. y= 0.5x + 1.8
C. y= 2.0 • (1.4%)
D. y = 0.7 x + 2.1
According to this research, options B and D appear to be the most slope plausible explanations for the data. However, without the real data, determining which equation is the best model is impossible.
what is slope?The slope of a line indicates how steep it is. The gradient's mathematical equation is known as "gradient overflow" (the change in y divided by the change in x). The slope is defined as the ratio of the vertical change (rise) between two places to the horizontal change (run). The slope-intercept form of an equation is used to express a straight line's equation, which is written as y = mx + b. The y-intercept is found where the slope of the line is m, b is b, and (0, b). For example, consider the slope and y-intercept of the equation y = 3x - 7.The slope of the line is m. b is b at the y-intercept, and (0, b).
It is impossible to establish which equation is the best model of the data without the actual data. However, we may analyse each possibility based only on the facts provided:
A. y= 2.2 - (1.1%): This equation appears to contain a constant term and a negative slope, making it unsuitable for predicting plant height over time.
B. y= 0.5x + 1.8: The positive slope of this equation indicates that the plant's height rises with time. The constant term of 1.8 might represent the plant's beginning height, while the coefficient of 0.5 could reflect the plant's growth rate.
C. y= 2.0 • (1.4%): This equation appears to contain a constant term and a positive slope, but the percentage term is not obvious how it links to the data.
D. y = 0.7 x + 2.1: This equation, like option B, has a positive slope and a constant term. The coefficient of 0.7 might reflect the plant's growth rate, while the constant term of 2.1 could represent the plant's original height.
According to this research, options B and D appear to be the most plausible explanations for the data. However, without the real data, determining which equation is the best model is impossible.
To know more about slope visit:
https://brainly.com/question/3605446
#SPJ1
Which of the following is a rational number?
Square root of 36, 0.93993..., square root of 85, or 3.4563728...
Answer:
It would be the square root of 36.
Step-by-step explanation:
find missing value
i rlly need help thanks
Answer:
x = 9
Step-by-step explanation:
if three or more parallel lines are intersected by two or more transversals, the parallel lines divide the transversals proportionally , that is
\(\frac{3}{x}\) = \(\frac{2.5}{7.5}\) = \(\frac{1}{3}\) ( cross- multiply )
x = 3 × 3 = 9
Zena saves $5 for every $30 she earns. Which of these describes the rate at which Zena saves?
A $1 saved for every $5 earned
B. $1 saved for every $6 earned
C. $6 saved for every $5 earned
D. $0.60 saved for every $10 earned
Answer:
I think it is c because yah
(1,-8) Slope=-1
Find the parallel and the perpendicular slope EXPLAIN PLEASE
The parallel slope is -1 and perpendicular is 1.
What is slope?Numerical measure of a line's inclination relative to the horizontal. In analytic geometry, the slope of any line, ray, or line segment is the ratio of the vertical to the horizontal distance between any two points on it.
Given that, Slope of a line = -1,
We know that, slope of parallel line are equal and the slope for the perpendicular line are negative reciprocal of each other,
Therefore,
The slope parallel to line = -1
The slope perpendicular to the line = 1
Hence, the parallel slope is -1 and perpendicular is 1.
Learn more about slopes, click;
https://brainly.com/question/2491620
#SPJ1
What is the equation of the line that passes through the point (-1,3) and has a slope of -11/6
assuming the number of views grows according to an exponential model, write a formula for the total number of views ( v ) the video will have after t days
the formula for the total number of views (v) the video will have after t days can be expressed as:
\(v = a * e^{kt}\)
Assuming the number of views grows according to an exponential model, the formula for the total number of views (v) the video will have after t days can be expressed as:
\(v = a * e^{kt}\)
where:
a is the initial number of views
k is the growth rate constant
t is the number of days
This formula is based on the assumption that the rate of growth of views is proportional to the number of views already accumulated. Therefore, as the number of views grows, the rate of growth also increases, resulting in an exponential increase in the total number of views.
learn more about exponential model,
https://brainly.com/question/28596571
#SPJ11
(please help!!!!) The list represents a student's grades on tests in their math class.
59, 65, 70, 80, 98, 71, 45, 79, 77, 85
Find the range for the data set.
45
53
74
98
Answer:
Range is 53
Step-by-step explanation:
The range is the difference between the maximum and minimum values in a data set.
The minimum value in the data set is 45, and the maximum value is 98.
Therefore, the range is:
98 - 45 = 53
So the answer is 53.
Convert 45.1% to a decimal.
Answer:
Queen Messy here!
0.451
moving the decimals to the left when dividing (:
Step-by-step explanation:
Kelly spun a spinner, which is pictured below, 40 times.She recorded her results in the table provided. What isthe theoretical probability of the spinner landing onthe yellow section?ColorNumber ofSpins6GreenBlueYellowOrange91411
We can see that there are 6 sections and three of them are yellow. So, the theoretical probability of the spinner landing on the yellow section is:
3 ( yellow sections)/ 6 (Total number of sections)
3/6 = 1/2 (Simplifying)
The answer is 1/2.
a study is to be conducted to help determine whether a die is fair. how many degrees of freedom are there for a chi-square goodness-of-fit test?
The degrees of freedom for a chi-square goodness-of-fit test are calculated as the number of categories minus 1.
Suppose we wish to determine if an ordinary-looking six-sided die is fair, or balanced, meaning that each face has a probability of 1/6
of arrival on top when the die is tossed. We could toss the die dozens, maybe hundreds, of times and compare the actual number of times each face arrival on top to the scheduled number, which would be 1/6
of the total number of tosses. We would not expect each number to be exactly 1/6 of the total, but it should be close.
To know more about Chi-Square test:
https://brainly.com/question/14082240
#SPJ4
What is 1 pint equal to in cups?
Answer:
2 Cups
Step-by-step explanation:
For every 1 pint there are 2 cups. So the answer is 2 cups. (please give heart)
Two cups are equal to one pint.
2 pints are equal to 4 cups.
4 pints are equal to 8 cups.
5 pints equal 10 cups.
1 cup is one-half of a pint.
How much is one pint?Two cups of liquid or one-eighth of a gallon make up a pint, a unit of volume and measurement. It is a unit that is used in both the British Imperial and US Customary systems of measurement to quantify volume or capacity.
How many cups does a pint equal?The British Imperial and American customary systems of measurement both use cups as the unit of volume measurement. If we recall, 1 cup equals 8 ounces. 1 pint or 16 ounces in 2 cups Typically, 2 cups equal 1 pint. However, it could differ based on the substance. One pint of blueberries, for instance, equals 12 ounces (dry) or 2 cups, although one pint of sour cream or one pint of ice cream also equals 2 cups.
To know more about pint visit:
https://brainly.com/question/28331502
#SPJ4
Factorise fully ( − 3)(^2+ 4 − 11) + ( − 3)^2
Step 1
Given;
\((x-3)(x^2+4x-11)+(x-3)^2_{}\)Required; To factorize the problem
Step 2
Find the GCF
\(\text{The GCF is x-3 because it is common}\)Hence, we will factorize thus and have;
\(\text{GCF(}\frac{Total\text{ first term}}{\text{GCF}}+\frac{Total\text{ second term}}{\text{GCF}})\)Applying this we will have;
\(x-3(\frac{(x-3)(x^2+4x-11)}{x-3}+\frac{(x-3)^2}{x-3})\)\(\begin{gathered} (x-3)((x^2+4x-11)_{}+(x-3)) \\ (x-3)(x^2+4x+x-11-3)--\text{ open bracket and add like terms} \\ (x-3)(x^2+5x-14) \end{gathered}\)Therefore, we will now factorize (x²+5x-14) by finding the terms that when added together gives 5x and when multiplied together gives -14x²
\(\begin{gathered} \text{These factors are 7x and -2x} \\ \end{gathered}\)Replace 5x with (7x-2x)
\(x^2+7x-2x-14\)Grouping the four terms in twos, that is the first two as a pair and the remaining two as the other pair, we can bring out common terms from each pair. This is shown below:
\(\begin{gathered} x^2\text{ }and\text{ }7x\Rightarrow x \\ -2x\text{ }and-14\Rightarrow-2 \end{gathered}\)Therefore, using the factoring method shown in Step 2, we have the expression to be:
\(\begin{gathered} x^2+7x-2x-14 \\ \text{Put the brackets} \\ (x^2+7x)(-2x-14) \\ \text{find the GCF in each bracket} \\ In\text{ the first bracket the GCF is x. In the second bracket the GCF is -}2 \\ x(\frac{x^2}{x}+\frac{7x}{x})-2(\frac{-2x}{-2}-\frac{14}{-2}) \\ \text{divide by GCF in each bracket} \\ x(x+7)-2(x+7) \end{gathered}\)Collecting the like terms, we, therefore, have the factorized expression to be:
\(\Rightarrow(x+7)(x-2)\)Therefore the full factorized expression will be;
\((x-3)(x+7)(x-2)\)The answer will therefore be ; (x-3)(x+7)(x-2)
to estimate the average cost of flowers for summer weddings in a certain region, a journalist selected a random sample of 15 summer weddings that were held in the state. a graph of the sample data showed an approximately symmetric distribution with no outliers. the sample mean and standard deviation were $734 and $102, respectively. the journalist will create a 95 percent confidence interval to estimate the population mean. have all conditions for inference been met?
No, it is not safe to assume that the sampling distribution of the sample means is about normal given the sample size.
Based on the information provided, it was reported that a journalist chose a random sample of 15 summer weddings that were hosted in the state in order to determine the average cost of flowers for summer weddings in a particular region.Note that the Z test usually includes more than 30 samples. 15 samples were used in this instance.Because of this, it is not possible to assume the sampling distribution from the sample size.Learn more about sampling on:
https://brainly.com/question/24466382
#SPJ4
A, B & C form the vertices of a triangle, where
∠
CAB = 90°.
AB = 10.3 m and AC = 5.4m.
Evaluate
∠
ACB, giving your answer rounded to 3 SF
In a triangle with vertices A, B, and C, where angle CAB is a right angle, the lengths of sides AB and AC are given. The task is to find the measure of angle ACB, rounded to three significant figures.
In a right-angled triangle, the angle opposite the right angle is always 90 degrees. In this case, angle CAB is a right angle. Therefore, angle ACB is the remaining angle in the triangle that needs to be evaluated.
To find the measure of angle ACB, we can use trigonometric ratios. The most appropriate ratio to use in this case is the tangent ratio, which is defined as the ratio of the length of the side opposite the angle to the length of the side adjacent to the angle. Using the given lengths of sides AB and AC, we can calculate the tangent of angle ACB as:
tan(ACB) = AB / AC
Substituting the values, we have:
tan(ACB) = 10.3 / 5.4
Using a scientific calculator, we can find the value of the tangent and then take the inverse tangent to find the measure of angle ACB.
ACB ≈ arctan(10.3 / 5.4)
Evaluating this expression, we find:
ACB ≈ 63.717 degrees
Rounding to three significant figures, the measure of angle ACB is approximately 63.7 degrees.
Learn more about trigonometric ratios here:- brainly.com/question/23130410
#SPJ11
Cars enter a car wash according to a poisson process at a mean rate of 2 cars per half an hour. what is the probability that, in an hour, at least 4 cars will enter the car wash?
The probability that, in an hour, at least 4 cars will enter the car wash is 0.94.
What is probability?It is defined as the ratio of the number of favorable outcomes to the total number of outcomes, in other words, the probability is the number that shows the happening of the event.
It is given that:
Cars enter a car wash according to a Poisson process at a mean rate of 2 cars per half an hour.
Here the value of λ is:
λ = 2 cars/half an hour
λ = 4 cars/hour
The probability that, in an hour, at least 4 cars will enter the car wash:
P(x = 4) = 4⁴e⁻⁴/5
After solving:
P(x = 5) = 0.937 ≈ 0.94
Thus, the probability that, in an hour, at least 4 cars will enter the car wash is 0.94.
Learn more about the probability here:
brainly.com/question/11234923
#SPJ4
need help asap. low geometry grade
Answer:
x=9.3
Step-by-step explanation:
use SohCahToa
in this case u use cos
cos(41°)=7/x
x=7/cos(41)
x=9.275090953
x=9.3
Can’t figure this one out
Quick algebra 1 question for 10 points!
Only answer if you know the answer, quick shout-out to tariqareesha2 and MrBrainly, tysm for the help!
\(y = 2x {}^{2} - 4x - 16 \\ \delta = b {}^{2} - 4ac \\ \delta = ( - 4) {}^{2} - 4(2)( - 16) \\ \delta = 16 + 128 \\ \delta = 144 > 0 \)
\(x = \frac{ - b + \sqrt{ \delta} }{2a} = \frac{4 + 12}{2 \times 2} = \frac{16}{4} = 4\)
\(x = \frac{ - b - \sqrt{ \delta} }{2a} = \frac{4 - 12}{2 \times 2} \frac{ - 8}{4} = - 2\)
\(x = 4 \: \: \: \: \: or \: \: \: \: x = - 2 \\ (x - 4) = 0 \: \: \: \: \: or \: \: \: \: \: (x + 2) = 0\)
\(f(x) = \alpha (x - 4)(x + 2) \\ f(x) = \alpha x { }^{2} + 2 \alpha x - 4 \alpha x - 8 \alpha \\ f(x) = \alpha x {}^{2} - 2 \alpha x - 8 \alpha \\ by \: comparison \\ \alpha = 2\)Factors are:1) 22) x - 43) x + 2The midpoint rule for estimating a definite integral uses a Riemann sum with subintervals of equal width and the ________________, of each subinterval in place of
The midpoint rule for estimating a definite integral uses a Riemann sum with subintervals of equal width and the midpoint, or the value at the center, of each subinterval in place of the function values.
The midpoint rule is a method for approximating the value of a definite integral using a Riemann sum. It involves dividing the interval of integration into subintervals of equal width and evaluating the function at the midpoint of each subinterval.
Here's how the midpoint rule works:
Divide the interval of integration [a, b] into n subintervals of equal width, where the width of each subinterval is given by Δx = (b - a) / n.
Find the midpoint of each subinterval. The midpoint of the k-th subinterval, denoted as x_k*, can be calculated using the formula:
x_k* = a + (k - 1/2) * Δx
Evaluate the function at each midpoint to obtain the function values at those points. Let's denote the function as f(x). So, we have:
f(x_k*) for each k = 1, 2, ..., n
Use the midpoint values and the width of the subintervals to calculate the Riemann sum. The Riemann sum using the midpoint rule is given by:
R = Δx * (f(x_1*) + f(x_2*) + ... + f(x_n*))
The value of R represents an approximation of the definite integral of the function over the interval [a, b].
The midpoint rule provides an estimate of the definite integral by using the midpoints of each subinterval instead of the function values at the endpoints of the subintervals, as done in other Riemann sum methods. This approach can yield more accurate results, especially for functions that exhibit significant variations within each subinterval.
To know more about definite integral,
https://brainly.com/question/30479817
#SPJ11
HI GUYS I HAVE ONE MORE HEHEHEHE....
TYSMM
(U DONT HAVE TO ANSWER IF U DONT KNOW BOTH )
Answer:
OPTION D, IS THE CORRECT ANSWER IN BOTH
PLEASE HELP | WILL GIVE BRAINLY IF RIGHT | LOOK AT IMAGE
Answer:
Town C
Step-by-step explanation:
joan is building a sandbox in the shape of a regular pentagon. the perimeter of the pentagon is 35y4 – 65x3 inches. what is the length of one side of the sandbox? 5y – 9 inches 5y4 – 9x3 inches 7y – 13 inches 7y4 – 13x3 inches
The length of one side of the sandbox is 7y4 - 13x3 inches. To find the length of one side of a regular pentagon, we divide the perimeter by the number of sides (pentagon has 5 sides).
The given perimeter is 35y4 - 65x3 inches. So, the length of one side is (35y4 - 65x3) / 5 = 7y4 - 13x3 inches. In a regular pentagon, all sides are equal in length, and the sum of all interior angles is 540 degrees. However, this information is not needed to determine the length of one side in this specific problem.
Learn more about perimeter here: brainly.com/question/7486523
#SPJ11
QUESTION:
Joan is building a sandbox in the shape of a regular pentagon. The perimeter of the pentagon is 35y4 – 65x3 inches. What is the length of one side of the sandbox?
5y – 9 inches
5\(y^{4}\) – 9\(x^{3}\) inches
7y – 13 inches
7\(y^{4}\) – 13\(x^{3}\) inches
An ice chest contains 2 bottles of orange juice,
5 bottles of grape juice, and 1 bottle of apple
juice, all buried in ice. What's the probability
of pulling out a bottle of orange juice and then
a bottle of grape juice?
Answer:
5/28
Step-by-step explanation:
P(oj, then grape) = 2/8 x 5/7 = 10/56 = 5/28
The probability of pulling out a bottle of orange juice and then a bottle of grape juice is 5/28.
What is probability?Probability is defined as the ratio of the number of favorable outcomes to the total number of outcomes in other words the probability is the number that shows the happening of the event.
Probability = Number of favorable outcomes / Number of sample
An ice chest contains 2 bottles of orange juice, 5 bottles of grape juice, and 1 bottle of apple juice, all buried in ice.
The probability of pulling out a bottle of orange juice and then a bottle of grape juice is calculated as below:-
Probability = Number of favorable outcomes / Number of sample
P(orange , then grape) = 2/8 x 5/7 = 10/56 = 5/28
Therefore, the probability of pulling out a bottle of orange juice and then a bottle of grape juice is 5/28.
To know more about probability follow
https://brainly.com/question/24756209
#SPJ2
i need help does anyone know this question
Answer:
The third answer is correct.
Step-by-step explanation:
You are going to translate the smaller quadrilateral (4 sided figure) to the larger quadrilateral. Then you need the scale factor from the smaller figure to the larger.
Side EF times the scale factor will give you side AB. Let's call the scale factor s then our equation would be:
EF x s = AB To find s divide both sides by EF
\(\frac{EF(s)}{EF}\) = \(\frac{AB}{EF}\)
s = \(\frac{AB}{EF}\) This is our scale factor.
Helping in the name of Jesus.
Time (min) Distance (km).
The missing values of time and distance are 2, 7 and 30 respectively.The solution has been obtained by the concept of linear relationship.
What is linear relationship?
In statistics, a straight line of correlation between two variables is referred to as a linear relationship (or linear association).
We are given a table which represents a linear relationship.
In the table, it can be observed that for covering 18 km of distance, 6 minutes are required.
So, for covering 1 km of distance, 1/3 minutes are required
Therefore, for covering 6 km of distance, time required is
6 * 1/3 = 2 minutes
Similarly, for covering 21 km of distance, time required is
21 * 1/3 = 7 minutes
In 6 minutes, 18 km of distance is covered.
So, in 1 minute, the distance covered is 3 km.
Therefore, in 10 minutes, the distance covered is
10 * 3 = 30 km
Hence, the missing values are 2, 7 and 30 respectively.
Learn more about linear relationship from the given link
https://brainly.com/question/29685213
#SPJ1
Marjane wants to create a set of data with 6 values. She wants the mode to be as good as the median to represent the data set. Which set of data best represents what Marjane could create?
24, 24, 25, 29, 29, 29
24, 25, 26, 27, 30, 30
24, 25, 25, 25, 26, 26
24, 24, 25, 26, 26, 27
As per the median, the set of data that fulfilling Marjane's requirement is 24, 25, 25, 25, 26, 26 (option c).
In statistics, data is a collection of numbers or values that represent a particular phenomenon. One way to measure central tendency, or the typical or representative value of the data, is through the median and the mode.
The median is the middle value when the data is arranged in numerical order, and the mode is the value that appears most frequently.
The third set of data is 24, 25, 25, 25, 26, 26.
The median is the middle value, which is also (25+25)/2 = 25.
The mode is the value that appears most frequently, which is 25.
Therefore, the mode and median are the same, fulfilling Marjane's requirement.
Therefore, the correct option is (c).
To know more about median here
https://brainly.com/question/30891252
#SPJ4
Locate √13 √17 on number line. (Please step by step explanation or preferably done in notebook) I’ll mark brainless the best answer
Explanation:
Turn the irrational numbers into decimals, so it is easy to understand and point on the number line graph.
Numbers provided:
√13 = 3.605551275 ≈ 3.61
√17 = 4.123105625 ≈ 4.12
Step by Step Solving:
The number 3.61 will be between 3.5 and 3.7The number 4.12 will be between 4 and 4.2Plot the points (circled area's):
Select the correct answer from each drop-down menu. in δabc, m∠b = 90°, cos(c) = , and ab = 16 units. based on this information, m∠a = °, m∠c = °, and ac = units. note that the angle measures are rounded to the nearest degree.
Given that triangle ABC has a right angle at angle B (m∠B = 90°), the cosine of angle C can be calculated using the adjacent side (AB = 16 units) and the hypotenuse (AC).
Using the cosine function:
cos(C) = AB / AC
Since AB = 16 units, we need to find AC to calculate the cosine of angle C.
Using the Pythagorean theorem:
AC^2 = AB^2 + BC^2
Since angle B is a right angle, BC is the side opposite angle C. BC can be calculated using the Pythagorean theorem:
BC = √(AC^2 - AB^2)
Given that AB = 16 units, we need to calculate BC to determine AC and the cosine of angle C.
Now we can substitute the values into the equation to find BC:
BC = √(AC^2 - 16^2)
Once BC is calculated, we can find AC using:
AC = √(AB^2 + BC^2)
Finally, we can substitute the values of AB and AC into the cosine function to find the cosine of angle C:
cos(C) = AB / AC
Calculating the values for angle A, angle C, and AC will require numerical calculations based on the given information.
Learn more about cosine here:
https://brainly.com/question/29114352
#SPJ11
This problem requires trigonometric identities and the properties of triangles to solve. We need either the length of side BC or the cosine of angle C to calculate the measures of angles A and C and the length of AC. However, the needed information is not provided in the question.
Explanation:Before we can determine the measures of the angles and the length of the other side in ΔABC, we need more information, specifically, the value of the cosine of angle C. Unfortunately, the value for cos(C) was not provided in the question. However, under normal circumstances, you would use both the triangle's properties and trigonometric identities to solve this. These identities are based on the defined ratios of the sides of a right-angled triangle, and include the Pythagorean theorem (sin2(x) + cos2(x) = 1) and definitions of the sine, cosine, and tangent functions.
Since angle B is 90° and the angles in a triangle add up to 180°, you can find the measure of angle A by subtracting the measures of angles B and C from 180°. You would also use the Pythagorean theorem to find the length of side AC - if AB is the hypotenuse and BC is another side of the triangle, then AC = √(AB2 - BC2).
But without the value of cos(C) or the length of BC, it's impossible to find the measures of angles A and C and the length of AC.
Learn more about Trigonometry here:https://brainly.com/question/31896723
#SPJ12