Answer:
9.877 m/s^2
Explanation:
The acceleration can be computed from ...
d = (1/2)at^2
(1600 m) = (1/2)a(18 s)^2
a = (1600/162) m/s^2 ≈ 9.877 m/s^2
A brick of mass 2.0kg is at rest. It falls to the ground through a
distance of 5.0 m. The acceleration of free fall g is 10 m/s2.
Air resistance can be ignored. At what speed does the brick hit
the ground?
Answer:
I may not have the answer so i'll just give up some hints.
Multiply the time by the acceleration due to gravity to find the velocity when the object hits the ground. If it takes 9.9 seconds for the object to hit the ground, its velocity is (1.01 s)*(9.8 m/s^2), or 9.9 m/s. Choose how long the object is falling. In this example, we will use the time of 8 seconds. Calculate the final free fall speed (just before hitting the ground) with the formula v = v₀ + gt = 0 + 9.80665 * 8 = 78.45 m/s . Find the free fall distance using the equation s = (1/2)gt² = 0.5 * 9.80665 * 8² = 313.8 m .h = 0.5 * 9.8 * (1.5)^2 = 11m. b. V = gt = 9.8 * 1.5 = 14.7m/s. A feather and brick dropped together. Air resistance causes the feather to fall more slowly. If a feather and a brick were dropped together in a vacuum—that is, an area from which all air has been removed—they would fall at the same rate, and hit the ground at the same time.When an object's point is taller the thing that is going down it will go faster than when the point is lower. EXAMPLE: The object is the tennis ball if you drop it down the higher hill it will be faster than if you drop it down a shorter hill. In other words, if two objects are the same size but one is heavier, the heavier one has greater density than the lighter object. Therefore, when both objects are dropped from the same height and at the same time, the heavier object should hit the ground before the lighter one.
I hope my little bit (big you may say) hint help you with your question.
The change of distance with respect to time is defined as speed. Speed is a scalar quantity. The speed of brick while hits the ground is 9.90 m/sec.
What is velocity?The change of distance with respect to time is defined as speed. Speed is a scalar quantity. It is a time-based component. Its unit is m/sec.
The given data in the problem is
m is the mass of block =2.0 Kg
u is the initial velocity of fall =0 m/sec
h is the distance of fall = 5.0 m
g is the acceleration of free fall =10m/sec²
v is the hitting velocity of brick=?
According to Newton's third equation of motion
\(\rm v^2=u^2+2gh\\\\ \rm v^2=2gh\\\\ \rm v= \sqrt{2gh}\)
\(\rm v= \sqrt{2\times 9.81 \times 5.0} \\\\ \rm v=9.90\;m/sec\)
Hence the speed of the brick while hits the ground is 9.90 m/sec.
To learn more about the speed refer to the link ;
https://brainly.com/question/7359669
Question 3 of 5 What happens to the particles in a substance as it melts? O A. The particles slow down and become fixed in place. B. The particles move more quickly but stay fixed in place. O C. The particles slow down and move closer together, but they can still move around. O D. The particles move more quickly and begin to move from place to place. SUBMIT
Answer:
D. The particles move more quickly and begin to move from place to place.
Explanation:
Some dragonflies splash down onto the surface of a lake to clean themselves. After this dunking, the dragonflies gain altitude, and then spin rapidly at about 1100 rpm to spray the water off their bodies. When the dragonflies do this "spin-dry," they tuck themselves into a "ball" with a moment of inertia of 2.0×10−7kg⋅m2 . How much energy must the dragonfly generate to spin itself at this rate?
The dragonfly must generate approximately 4.8 × 10^-4 Joules of energy to spin itself at a rate of 1100 rpm.
Start by converting the rotational speed from rpm (revolutions per minute) to rad/s (radians per second). Since 1 revolution is equal to 2π radians, we can use the conversion factor:
Angular speed (ω) = (1100 rpm) × (2π rad/1 min) × (1 min/60 s)
ω ≈ 115.28 rad/s
The moment of inertia (I) is given as 2.0 × 10^-7 kg⋅m².
Use the formula for rotational kinetic energy:
Rotational Kinetic Energy (KE_rot) = (1/2) I ω²
Substituting the given values:
KE_rot = (1/2) × (2.0 × 10^-7 kg⋅m²) × (115.28 rad/s)²
Calculate the value inside the parentheses:
KE_rot ≈ (1/2) × (2.0 × 10^-7 kg⋅m²) × (13274.28 rad²/s²)
KE_rot ≈ 1.331 × 10^-3 J
Round the result to the proper number of significant figures, which in this case is three, as indicated by the given moment of inertia.
KE_rot ≈ 4.8 × 10^-4 J
Therefore, the dragonfly must generate approximately 4.8 × 10^-4 Joules of energy to spin itself at a rate of 1100 rpm.
For more such questions on energy, click on:
https://brainly.com/question/8101588
#SPJ8
A convex mirror of focal length 33 cm forms an image of a soda bottle at a distance of 19 cm behind the mirror.If the height of the image is 7.0 cm,where is the object located,and how tall is it? What is the magnification of the image? Is the image virtual or real? Is the image inverted or upright? Draw a ray diagram to confirm your results.
Answer:
Image distance = 44.8cm, Image height = 16.5cm, Magnification = 0.42
The image is a virtual and upright image.
Explanation:
The nature of image formed by an object placed in front of a convex mirror is always diminished, virtual and erect.
The focal length f and the image distance are always NEGATIVE beacause the image is formed behind the mirror.
Given f = -33.0cm, v = -19.0cm
using thr mirror formula to get the object distance u, we have;
\(\frac{1}{f}=\frac{1}{u} + \frac{1}{v}\\ \frac{1}{u}=\frac{1}{f} - \frac{1}{v}\\\frac{1}{u}=\frac{1}{-33} - \frac{1}{-19}\\\frac{1}{u}=\frac{-19+33}{627} \\\frac{1}{u}=\frac{14}{627} \\u=\frac{627}{14} \\u = 44.8cm\)
To calculate the image height, we will use the magnification formula
M = \(\frac{image\ height}{object\ height}=\frac{image\ distance}{object\ distance} \\\)
M = \(\frac{Hi}{HI}=\frac{v}{u}\)
Given Hi = 7.0cm
v = 19.0cm
u = 44.8cm
HI = 7*44.8/19
HI = 16.5cm
The object height is 16.5cm
Magnification = v/u = 19.0/44.8 = 0.42
SInce the image is formed behind the mirror, the image is a VIRTUAL and UPRIGHT image
An acorn falls from rest from the top of a 19m tall oak tree. How long does it take for the acorn to fall to the ground? How fast is the acorn going before it hits the ground?
Answer:
We can solve this problem using the kinematic equation:
y = 1/2 * g * t^2
where y is the height of the tree, g is the acceleration due to gravity (9.8 m/s^2), and t is the time taken to fall to the ground.
We can solve for t using:
t = sqrt(2y/g)
Plugging in the values, we get:
t = sqrt(2(19)/9.8)
t = 2.19 seconds
So, it takes 2.19 seconds for the acorn to fall from the tree to the ground.
To find the velocity of the acorn just before it hits the ground, we can use:
v = g * t
Plugging in the values, we get:
v = 9.8 * 2.19
v = 21.46 m/s
So, the acorn is going approximately 21.46 m/s just before it hits the ground.
Explanation:
What is the total potential difference provided by the four cells in the circuit each of 1.5volts?
Answer:
Answers 2.( a) . (i)Total potential difference provided by the four cell = 4x 1.5 Volts = 6.0 Volts (ii)The component of X is a variable resistor .
Explanation:
hope it helps
The total potential difference provided by the four cells in the circuit each of 1.5volts is 6 volts.
What is potential difference?The potential difference between two points in a circuit is the difference in the amount of energy that charge carriers have.
Volts are measured as follows: Potential difference is also known as voltage and is measured in volts (V).
The external work required to move a charge from one location to another in an electric field is known as the electric potential difference, also known as voltage.
When electrical cells are connected in series, such as in a battery, the battery's potential difference is the sum of the potential differences of each cell. As a result, the battery's potential difference is the sum of their potential differences.
It is given that:
The voltage of each cell = 1.5 volts.
So, the potential difference = 4 x 1.5
Potential difference = 6 volts.
Thus, the total potential difference is 6 volts.
For more details regarding potential difference, visit:
https://brainly.com/question/12198573
#SPJ2
Bob creates an instrument that is able to play C4 (261.63 Hz). He does some analysis with the sound equipment and it shows that when he plays it, he also gets the frequencies 523.26 Hz, 784.89 Hz, and 1308.15 Hz. What could be true about the instrument? It’s a stringed instrument, it’s a closed pipe, or it’s an open pipe?
Answer:
It could be a stringed instrument or an open pipe.
Explanation:
Let v be the speed of sound, y be wavelength and f be frequency.
v = yf
f= v/y; v is constant.
In a stringed instrument, the fundamental frequency note is heard when the length of the string, l = y/2; y= 2l
f′= v/2l
The second harmonic is heard when l= y
f"= v/y
...
f'''= 3v/2l
We can infer that f"= 2f'
f'''= 3f'
This is similar to the values in the question as;
523.26 =2(261.63) and so on.
Same thing happens with open pipes.
no need for an explanation, i need answers
The angular momentum of the particle in the x-component, y-component, and z-component are 3.12, 2.84, and 1.19 kg.m/s² respectively.
What is angular momentum?Angular momentum can be defined as the rotational form of linear momentum. Angular momentum is a physical conserved quantity.
The angular momentum in the terms of linear momentum can be represented as:
\(\displaystyle \vec L= \vec r\times \vec p = m\vec r \times \vec v\)
Given, the mass of the particle, m = 70 Kg
The displacement of the vector of the particle, \(\vec r = (5.0, -5.5)\)
The velocity of the vector of the particle, \(\vec u = (3.2, 0, -8.1)\)
The angular momentum of the particle, L can be calculated as:
\(\displaystyle \vec L= m\vec r \times \vec u\)
\(\displaystyle \vec L= m(5.0,-5.5, 0)\times (3.1,0,-8.1)\)
\(\displaystyle \vec L= 0.070 \times (44.55, 40.5, 17.05) .Kg.m/s^2\)
\(\displaystyle \vec L= (3.12, 2.84, 1.19) \; kg.m/s^2\)
Therefore, the x-component of angular momentum = 3.12 kg.m/s²
The y-component of angular momentum = 2.84 kg.m/s²
The z-component of angular momentum = 1.19 kg.m/s²
Learn more about angular momentum, here:
brainly.com/question/15104254
#SPJ1
Compare the level of energy of radio and microwaves when compared to other waves on the spectrum.
A 80kg stone falls from the top of the 360 meter cliff. Neglecting friction, how fast will the stone be moving just before it hits the ground?
The stone will be moving at a speed of approximately 84.4 meters per second just before it hits the ground, neglecting friction.
To find how fast will the stone be moving just before it hits the ground?This problem can be solved using the laws of kinematics and conservation of energy. The potential energy of the stone at the top of the cliff is converted to kinetic energy as it falls. We can equate the potential energy at the top of the cliff to the kinetic energy just before hitting the ground.
Potential energy = mgh,
Where
m is the mass of the stone g is the acceleration due to gravity (9.8 m/s^2) h is the height of the cliff (360 meters)Kinetic energy = (1/2)mv^2,
Where
v is the velocity of the stone just before hitting the ground.Equating these two expressions and solving for v, we get:
mgh = (1/2)mv^2
v^2 = 2gh
v = sqrt(2gh)
Plugging in the given values, we get:
v = sqrt(2 x 9.8 m/s^2 x 360 m) = 84.4 m/s
Therefore, the stone will be moving at a speed of approximately 84.4 meters per second just before it hits the ground, neglecting friction.
Learn more about laws of kinematics here : brainly.com/question/28863739
#SPJ1
Pls tell me
Question: 1 way to keep people safe from hurricane.
Answer:
Hurricanes move fast so what you want to do is get into a basement or somthing underground so it will be harder for the hurricane to hit you
Explanation:
thanks for the coins
A baseball is popped straight up into the air and has a hang-time of 6.25 S.
Determine the height to which the ball rises before it reaches its peak. (Hint: the
time to rise to the peak is one-half the total hang-time.)
Answer:
To determine the height to which the ball rises before it reaches its peak, we need to know the initial velocity of the ball and the acceleration due to gravity. Let's assume the initial velocity of the ball is v and the acceleration due to gravity is g.
The time it takes for the ball to reach its peak is one-half the total hang-time, or 1/2 * 6.25 s = 3.125 s.
The height to which the ball rises can be calculated using the formula:
height = v * t - (1/2) * g * t^2
Substituting in the values we know, we get:
height = v * 3.125 s - (1/2) * g * (3.125 s)^2
To solve for the height, we need to know the value of v and g. Without more information, it is not possible to determine the height to which the ball rises before it reaches its peak.
Explanation:
Answer:
Approximately \(47.9\; {\rm m}\) (assuming that \(g = 9.81\; {\rm m\cdot s^{-2}}\) and that air resistance on the baseball is negligible.)
Explanation:
If the air resistance on the baseball is negligible, the baseball will reach maximum height at exactly \((1/2)\) the time it is in the air. In this example, that will be \(t = (6.25\; {\rm s}) / (2) = 3.125\; {\rm s}\).
When the baseball is at maximum height, the velocity of the baseball will be \(0\). Let \(v_{f}\) denote the velocity of the baseball after a period of \(t\). After \(t = 3.125\; {\rm s}\), the baseball would reach maximum height with a velocity of \(v_{f} = 0\; {\rm m\cdot s^{-1}}\).
Since air resistance is negligible, the acceleration on the baseball will be constantly \(a = (-g) = (-9.81\; {\rm m\cdot s^{-2}})\).
Let \(v_{i}\) denote the initial velocity of this baseball. The SUVAT equation \(v_{f} = v_{i} + a\, t\) relates these quantities. Rearrange this equation and solve for initial velocity \(v_{i}\):
\(\begin{aligned}v_{i} &= v_{f} - a\, t \\ &= (0\; {\rm m\cdot s^{-1}}) - (-9.81\; {\rm m\cdot s^{-2}})\, (3.125\; {\rm s}) \\ &\approx 30.656\; {\rm m\cdot s^{-1}}\end{aligned}\).
The displacement of an object is the change in the position. Let \(x\) denote the displacement of the baseball when its velocity changed from \(v_{i} = 0\; {\rm m\cdot s^{-1}}\) (at starting point) to \(v_{t} \approx 30.656\; {\rm m\cdot s^{-1}}\) (at max height) in \(t = 3.125\; {\rm s}\). Apply the equation \(x = (1/2)\, (v_{i} + v_{t}) \, t\) to find the displacement of this baseball:
\(\begin{aligned}x &= \frac{1}{2}\, (v_{i} + v_{t})\, t \\ &\approx \frac{1}{2}\, (0\; {\rm m\cdot s^{-1}} + 30.565\; {\rm m\cdot s^{-1}})\, (3.125\; {\rm s}) \\ &\approx 47.9\; {\rm m}\end{aligned}\).
In other words, the position of the baseball changed by approximately \(47.9\; {\rm m}\) from the starting point to the position where the baseball reached maximum height. Hence, the maximum height of this baseball would be approximately \(47.9\; {\rm m}\!\).
This model shows DNA, chromosomes, and genes. If B is a cell and C is the nucleus, what is A?
Based on the information, we can infer that A. represents a Mitochondria.
What is a mitochondria?Mitochondria is a term to refer to the eukaryotic cell organelles responsible for supplying most of the energy necessary for cell activity through the process called cellular respiration.
Based on the information, we can infer that the element that is labeled with the letter A is a mitochondrion because its location is that of a mitochondrion. In this case, the mitochondria is red, although in other models it can be represented with another color. In general, it is given this shape and this color to distinguish it from other elements of the cell.
Note: This question is incomplete. Here is the complete information:
Attached image
Learn more about DNA in: https://brainly.com/question/264225
#SPJ1
forces and their effects
Friction
Change in motion
Deformation
What is Force?
Force is an influence that can cause an object to accelerate or deform. It is a vector quantity that has both magnitude and direction, measured in units of newtons (N). Force can result from the interaction between two physical bodies, such as when two objects collide or when a force is applied to an object.
Change in motion: Forces can cause an object to start moving, stop moving, change direction, or change speed.
Deformation: Forces can deform or change the shape of an object. For example, a force can stretch a spring, bend a wire, or compress a sponge.
Stress: Forces can create stress within an object, which is the internal force that resists deformation or change in shape. Too much stress can cause an object to break or fail.
Friction: Forces can cause friction, which is the force that resists the motion of two surfaces in contact. Friction can cause objects to slow down, stop moving, or prevent them from sliding.
Learn more about Force from the given link
https://brainly.com/question/12785175
#SPJ9
What are the names and number of of atoms in a molecule of nitrous oxide,N2O?
Answer:
2 nitrogen and 1 oxygen,
Explanation:
N2=2 nitrogen
O= a single element
what is the full distance when an object is thrown at 35 m/s at an angle of 45 degrees
Okay, here are the steps to calculate the full distance traveled when an object is thrown at a certain speed and angle:
You have the initial velocity (v): 35 m/s
You have the launch angle (θ): 45 degrees
We need to split the initial velocity into its horizontal (vx) and vertical (vy) components.
To calculate vx (horizontal component):
vx = v * cosθ
vx = 35 * cos(45) = 24.7 m/s
To calculate vy (vertical component):
vy = v * sinθ
vy = 35 * sin(45) = 24.7 m/s
We can calculate the horizontal distance (d) traveled using:
d = vx * t (where t is time)
Since there is no air resistance, the vertical velocity (vy) will remain constant. This means the time the object is in the air is:
t = vy / g (where g is acceleration due to gravity, 9.8 m/s^2)
t = 24.7 / 9.8 = 2.52 seconds
Now we can calculate the full horizontal distance traveled:
d = vx * t
d = 24.7 * 2.52
= 62.3 meters
So the full distance the object will travel when thrown at 35 m/s at a 45 degree angle is approximately 62 meters.
Let me know if you have any other questions!
Answer:
To calculate the full distance traveled by an object thrown at a velocity of 35 m/s at an angle of 45 degrees, we need to consider the horizontal and vertical components of the motion separately.
The horizontal component of the motion remains constant throughout the trajectory and is given by:
Horizontal distance = (Initial velocity) * (Time of flight) * cos(angle)
In this case, the initial velocity is 35 m/s, the angle is 45 degrees, and we need to find the time of flight.
The time of flight can be calculated using the vertical component of the motion. The vertical motion can be described using the equation:
Vertical displacement = (Initial velocity * sin(angle))^2 / (2 * acceleration)
Where the initial velocity is 35 m/s, the angle is 45 degrees, and the acceleration is the acceleration due to gravity, approximately 9.8 m/s^2.
The vertical displacement is zero at the highest point of the trajectory since the object comes back down to the same height it was launched from. So we can solve the equation for the time of flight.
Using these calculations, we can find the horizontal distance traveled by the object.
Let's calculate step by step:
Step 1: Calculate the time of flight
Vertical displacement = 0 (at the highest point)
0 = (35 * sin(45))^2 / (2 * 9.8)
0 = (24.75^2) / 19.6
0 = 616.0125 / 19.6
0 = 31.43
Step 2: Calculate the time of flight
Vertical displacement = (Initial velocity * sin(angle)) * time - (1/2) * acceleration * time^2
0 = (35 * sin(45)) * time - (1/2) * 9.8 * time^2
0 = 24.75 * time - 4.9 * time^2
4.9 * time^2 - 24.75 * time = 0
time * (4.9 * time - 24.75) = 0
time = 0 (initial point) or 24.75 / 4.9
time = 5.05 seconds
Step 3: Calculate the horizontal distance
Horizontal distance = (Initial velocity) * (Time of flight) * cos(angle)
Horizontal distance = 35 * 5.05 * cos(45)
Horizontal distance = 35 * 5.05 * (sqrt(2)/2)
Horizontal distance = 88.96 meters
Therefore, when an object is thrown at 35 m/s at an angle of 45 degrees, the full distance traveled is approximately 88.96 meters.30 points!
Which statement best describes the difference between strong nuclear forces and weak nuclear forces? (2 points)
Group of answer choices
Weak nuclear forces are involved when certain types of atoms break down. Strong nuclear forces are responsible for holding atoms' nucleus together.
Weak nuclear forces hold bonds between atoms together. Strong nuclear forces hold together the nucleus of an atom.
Strong nuclear bonds prevent atoms from falling apart. Weak nuclear bonds prevent compounds from falling apart.
Strong nuclear forces are involved in breaking electrons from their shells. Weak nuclear forces hold protons in the nucleus.
Answer:
Since strong nuclear forces involve only nuclear particles (not electrons, bonds, etc) items 3 and 4 are eliminated.
Again item 2 refers to bonds between atoms and is eliminated.
This leaves only item 1.
Nuclear forces are very short range forces between components of the nucleus.
Weak nuclear forces are trillions of times smaller than strong forces.
Gravitational forces are much much smaller than the weak nuclear force.
Answer:
The answer is D
Explanation:
Can you please do this for me I’ll do 75 points
Answer:
Answer below, hope this helps!
Explanation:
1. Chemical - e
2.Light - b
3. Sound - g
4. Mechanical - f
5. Kinetic - a
6. Potential - d
7. Energy - j
8. Thermal - c
9. Nuclear - i
10. Electrical - h
Answer:
Chemical - e
Light - b
Sound - g
Mechanical - f
Kinetic - a
Potential - d
Energy - j
Thermal - c
Nuclear - i
Electrical - h
Explanation:
the distance between an object and its real image is 40 cm, if the magnification is 3, calculate the object and image distance if the focal length of the lens is 15 cm
The object distance of the lens is 10 cm and the image distance of the lens is 30 cm.
What is the image and object distance?The object and image distance formed by the lens is calculated by applying the following lens formula.
v + u = 40 ------- (1)
v/u = 3 ------------ (2)
v = 3u
Substitute v into equation (1);
3u + u = 40
4u = 40
u = 40/4
u = 10 cm
The image distance = 3u
= 3 x 10 cm
= 30 cm
Thus, the object distance is 10 cm and the image distance is 30 cm.
Learn more about image distance here: https://brainly.com/question/12629638
#SPJ1
Which of the following is not an example of approximate simple harmonic motion
Answer:
where are the options
it's not full question
An object with an initial horizontal velocity of 20 ft/s experiences a constant horizontal acceleration due to the action of a resultant force applied for 10 s. The work of the resultant force is 10 Btu. The mass of the object is 55 lb. Determine the constant horizontal acceleration, in ft/s2.
Answer:
a = 7.749 ft/s²
Explanation:
First to all, we need to convert all units, so we can work better in the calculations.
The horizontal acceleration is asked in ft/s² so the units of speed will be the same. The Work is in BTU and we need to convert it in ft.lbf in order to get the acceleration and final speed in ft/s:
W = 10 BTU * 778.15 Lbf.ft / BTU = 7781.5 lbf.ft
Now, to get the acceleration we need to get the final speed of the object first. This can be done, by using the following expression:
W = ΔKe (1)
And Ke = 1/2mV²
So Work would be:
W = 1/2 mV₂² - 1/2mV₁²
W = 1/2m(V₂² - V₁²) (2)
Finally, we need to convert the mass in lbf too, because Work is in lbf, so:
m = 55 lb * 1 lbf.s²/ft / 32.174 lb = 1.7095 lbf.s²/ft
Now, we can calculate the final speed by solving V₂ from (2):
7781.5 = (1/2) * (1.7095) * (V₂² - 20²)
7781.5 = 0.85475 * (V₂² - 441)
7781.5/0.85475 = (V₂² - 400)
9103.83 + 400 = V₂²
V₂ = √9503.83
V₂ = 97.49 ft/s
Now that we have the speed we can calculate the acceleration:
a = V₂ - V₁ / t
Replacing we have:
a = 97.49 - 20 / 10
a = 7.749 ft/s²Hope this helps
What ate the two safety precautions that should be taken before driving your car?
Answer:
When traveling behind other vehicles, there should be at least a four second space between your vehicles. When the car in front of you passes a stationary object, slowly count to yourself. If you pass the object before the allotted time, you should back off. When traveling at night or inclement weather, these times should be doubled.
Don't talk on a cell phone while driving. Phones detract from your ability to concentrate on the road and increase your chance of a collision by nearly 400%. If you must use the phone, pull over to a safe, well-lit parking lot and place your call there. After completing your call you may continue on your way.bey all speed limits and signs.
What is meant by half life ?
Air trapped inside a single-piston-cylinder exerts a pressure of 760 mmHg. If its volume is increased by 20% at a constant temperature, the pressure exerted would be equal to
he change in the pressure of the air trapped in the cylinder if its volume is increased by 20% at a constant temperature is 745 mmHg.
What is the change in the pressure of the air trapped in the cylinder?The change in the pressure of the air trapped in the cylinder if its volume is increased by 20% at a constant temperature is calculated from Boyle's law equation as follows:
The Boyle's law equation is given as follows:
P₁V₁ = P₂V₂
where;
P₁ is the initial pressure
V₁ is the initial volume
P₂ is the final pressure
V₂ is the final volume
From the data given,
P₁ = 760 mmHg
V₁ = V
P₂ = ?
V₂ = V + 0.2 V
V₂ = 1.02 V
P₂ = 760 * V / 1.02 V
P₂ = 745 mmHg
Learn more about Boyle's law equation at: https://brainly.com/question/22625142
#SPJ1
please give me correct answer
Answer:
1) convection.
2) thermometer.
3) Celsius scale.
4) Radiation.
5) Conduction.
6) Clinical thermometers.
Explanation:
so the questions have already given you a simple idea of their meanings.
Good luck.
Every force has a specific and identifiable cause called a(n)...............
1- agent
2- vector
3- system
4- direction
The farther away you are from a light source, the _____ intense it appears
Answer:
The answer is Less.
Explanation:
The further you are away from a light source, the less intense the light appears.
Help me please!!!!!!!!!!
The velocity of the ball just before it hits the ground is 14.0 m/s
Let's solve the problem using the given equation:
\(v^2 = u^2 + 2as\)
We know that u (initial velocity) is zero, s (distance traveled) is 10 meters, and a (acceleration due to gravity) is 9.81 m/s^2. We want to find the final velocity (v) just before the ball hits the ground.
Plugging in the given values, we get:
v^2 = 0 + 2(9.81)(10)
v^2 = 196.2
Taking the square root of both sides, we get:
v = sqrt(196.2)
v = 14.0 m/s
To know more about final velocity here
brainly.com/question/28608160
#SPJ1
--The complete Question is, A ball is dropped from a height of 10 meters. What is its velocity just before it hits the ground, assuming no air resistance? (Assume that the acceleration due to gravity is 9.81 m/s^2)
Hint: You can use the equation v^2 = u^2 + 2as, where v is the final velocity, u is the initial velocity (which is zero in this case), a is the acceleration due to gravity, and s is the distance traveled.--
1.A boy runs at a speed of 3.3 m/s straight off the end of a diving board that is 3 meters above the water
2.What is the horizontal distance the boy in # 1 travels while in the air ?
If a boy runs at a speed of 3.3 m/s straight off the end of a diving board that is 3 meters above the water, then the horizontal distance traveled by the boy would be 2.58 meters.
What are the three equations of motion?There are three equations of motion given by Newton,
v = u + at
S = ut + 1/2 × a × t²
v² - u² = 2 × a × s
As given in the problem if a boy runs at a speed of 3.3 m/s straight off the end of a diving board that is 3 meters above the water,
3 = ut + 1/2 × a × t²
3 = 0 + 0.5 × 9.8 × t²
t = 3 / 4.9
t = 0.7824
The horizontal distance traveled by the boy = 3.3 × 0.7824
= 2.58 meters
Thus, the horizontal distance traveled by the boy would be 2.58 meters.
To learn more about equations of motion here, refer to the link;
brainly.com/question/5955789
#SPJ2
Batman and Robin are attempting to escape that dastardly villain, the Joker, by hiding in a large pool of water (refractive index nwater = 1.333). The Joker stands gloating at the edge of the pool. (His makeup is watersoluble.) He holds a powerful laser weapon y1 = 1.49 m above the surface of the water and fires at an angle of θ1 = 27◦ to the horizontal. He hits the Boy Wonder squarely on the letter "R", which is located y2 = 3.77 m below the surface of the water. θ x y y 1 1 2 R J Batplastic surface Mirrored Surface water B How far (horizontal distance) is Robin from the edge of the pool? (Fear not, Batfans. The "R" is made of laser-reflective material.) Answer in units of m.
Answer:
x_total = 4.29m
Explanation:
To solve this exercise we must work in parts. Let's use the law of refraction to find the angle of the refracted ray and trigonometry to find the distances.
Let's start by looking for the angles that the laser refracts
n₁ sin θ₁ = n₂ sin θ₂
where n₁ is the air refraction compensation n₁ = 1, n₂ the water refractive index n₂ = 1,333
θ₂ = sin⁻¹ (n₁ sin θ₁/n₂)
θ₂ = sin⁻¹ (1 sin 27 / 1,333)
θ₂ = sin⁻¹ 0.34057
θ₂ = 19.9º
now let's find the distance from the edge of the pool to the point where the ₂lightning strikes the water
tan θ₁ = y₁ / x₁
x₁ = y₁ / tan θ₁
x₁ = 1.49 / tan 27
x₁ = 2,924 m
Now let's look for the waterfall in the water as far as Robin
tan θ₂₂ = y₂ / x₂
x₂ = y₂ / tan θ₂
x₂ = 3.77 / tan 19.9
x₂ = 1,364
the distance from the edge of the pool to Robin is
x_total = x₁ + x₂
x_total = 2,924 + 1,364
x_total = 4.29m