The food truck also offers catering services. The food truck makes different kinds of salads for parties and other events. Tammy looks at the paper menu to
decide what to buy
Macaroni Salad
$5 per pound
Potato Salad
$8 por pound
Tammy will order both macaroni and potato salad. She estimates that she will spend a total of 538 on 7 pounds of salad. She uses this system of equations to
show how many pounds of macaroni salad, m, and potato salad, p, she plans to buy.
5m +6p = 38
m+p=7
How many pounds of each salad does Tammy plan to buy?
Answer:
4 pounds of mac 3 pounds of potato
Step-by-step explanation:
5+6=11+5+6=22+5+6=33+5=38
Lynn is making custom bricks. She combines 39 pounds of water and 48 pounds of brick dust in a mixing bucket. She spills 13 pounds of the mixture while stirring the contents. The mixture is then poured into small dirt holes to make bricks. Each brick requires 7 pounds of mixture, and the leftover mixture is washed out of the mixing bucket.
The question is incomplete! Complete question along with answer and step by step explanation is provided below.
Question:
Lynn is making custom bricks. She combines 39 pounds of water and 48 pounds of brick dust in a mixing bucket. She spills 13 pounds of the mixture while stirring the contents. The mixture is then poured into small dirt holes to make bricks. Each brick requires 7 pounds of mixture, and the leftover mixture is washed out of the mixing bucket.
What is the greatest number of bricks Lynn can make?
How many pounds of mixture will be washed out of the bucket if Lynn makes the greatest number of bricks?
Answer:
Greatest number of bricks = 70
Washed out mixture = 4 pounds
Therefore, Lynn can make at most 70 bricks and 4 pounds of mixture will be washed out if she makes 70 bricks.
Step-by-step explanation:
She combines 39 pounds of water and 48 pounds of brick dust in a mixing bucket.
Amount of mixture = 39 pounds of water + 48 pounds of brick dust
Amount of mixture = 87 pounds
She spills 13 pounds of the mixture while stirring the contents.
Amount of mixture left = 87 pounds - 13 pounds
Amount of mixture left = 74 pounds
Each brick requires 7 pounds of mixture
What is the greatest number of bricks Lynn can make?
Greatest number of bricks = 7×10
Greatest number of bricks = 70
How many pounds of mixture will be washed out of the bucket if Lynn makes the greatest number of bricks?
Washed out mixture = 74 pounds - 70 pounds
Washed out mixture = 4 pounds
Therefore, Lynn can make at most 70 bricks and 4 pounds of mixture will be washed out if she makes 70 bricks.
a^2 b^2 c^2 for a =2, b and c=4
Answer:
1,024
Step-by-step explanation:
2*2*4*4*4*4=1024
Choose the statement below that is false. Question 2 options: In an observational study, the investigators assign the subjects to treatment or control groups. Controlled experiments can be randomized or non-randomized. Using a random chance procedure to assign subjects to treatment or control groups reduces bias. In a blind experiment, subjects do not know whether they are in the treatment group or control group.
The false statement among the options is: "In an observational study, the investigators assign the subjects to treatment or control groups."
In an observational study, the investigators do not assign subjects to treatment or control groups. Instead, they observe and collect data on the subjects as they naturally exist in their environments.
In observational studies, the assignment of subjects to groups is not under the control of the investigators, unlike in controlled experiments where researchers can assign subjects to different groups.
To know more about investigators visit-
brainly.com/question/14513880
#SPJ11
Simplify the expression: (23x + 6) - (x - 7)
Answer:
22x + 13Step-by-step explanation:
Hopes this helps. Mark as brainlest plz!Find the equation of a circle, in standard form, with endpoints a center at (2,-1) and a radius of 4
(x+2)2+(y−1)2=10
Explanation:
The simplest equation for a circle is:
XXX2+Y2=R2
for a circle with center at (0,0) R
and radius
If we want to shift this so the center is at
(−2,1)
then the
X
values become x=X−2xx→xxX=x+2
and the Y values become yy=Y−1xx → xxY=y−1=Y−1xx→xxY=y−1 So X 2+Y becomes
(x+2)2+(y−1)2
The radius is unaffected by the shift and will remain the same length.
The radius is the distance between the center
(−2,1)
and any point on the circumference; in this case we are given the point
(1,0)
Using the Pythagorean Theorem this gives us a radius squared of
XXXR2=((−2)−1)2+(1−0)2=10
Therefore the equation of our (shifted) circle will be
XXX(x+2)2+(y−1)2=10
Add the following complex numbers:
(2 - 8i)+ (5 - i)
O A. -3-91
B. 7-9;
O C. -3-71
D. 7 - 71
Answer:
B. 7 - 9i
Step-by-step explanation:
1) Remove Parentheses.
2 - 8i + 5 - i
2) Add 2 and 5.
7 - 8i - i
3) Subtract i from -8i.
7 - 9i
Answer:
Option B
The answer is 7 – 9i
Step-by-step explanation:
(2 – 8i) + (5 – i)
2 – 8i + 5 – i
7 – 9i
Thus, The answer is 7 – 9i
-TheUnknownScientist 72
Endpoint
Find the other endpoint of the line segment with the given endpoint
and midpoint
Endpoint 1: (0, -2)
Midpoint: (4,2)
Endpoint 2=(
I need help with the formula to solve? adelphi company purchased a bond investment on january 1, 2021. the bonds have a par of $50,000, pay interest at a 3% annual rate and have 5 years until maturity. what is the total interest income that will be reported over the life of the bond investment if the bonds were purchased at 101 and adelphi uses the straight line amortization method? enter as a whole number (no cents).
The total interest income reported over the life of the bond investment would be $7,500.
To calculate the total interest income, we need to determine the annual interest payment and multiply it by the number of years until maturity. In this case, the bond has a par value of $50,000 and pays interest at a 3% annual rate. The annual interest payment can be calculated by multiplying the par value by the interest rate, which gives us $50,000 * 0.03 = $1,500.
Since the bond has a maturity period of 5 years, we can multiply the annual interest payment by the number of years to obtain the total interest income. Therefore, the total interest income is $1,500 * 5 = $7,500.
Adelphi Company purchased the bonds at 101, which means they bought them at a premium. The straight-line amortization method assumes that the premium or discount is amortized evenly over the life of the bond. However, since the premium was not mentioned explicitly in the question, we can assume that it does not affect the calculation of the total interest income. In conclusion, over the life of the bond investment, Adelphi Company will report a total interest income of $7,500.
Learn more about interest here:
https://brainly.com/question/30393144
#SPJ11
Max has a board that measures 6 feet high in length. How many 1/4-foot long pieces can Max cut from the board?
Answer:
24 pieces
Step-by-step explanation:
6 ÷ 1/4
Your company wants to purchase some equipment for recycling metals. Machine A costs $323,000 and has a useful life of 10 years. Its operating costs are $2.40 per ton of metal processed. Machine B costs $178,000 and has a useful life of 6 years. Its operating costs are $8.00 per ton of metal processed. How many tons of metal per year must your company process to favor Machine A over Machine B? Assume an MARR of 18% per year.
Previous question
Next question
To determine the number of tons of metal per year needed for Machine A to be favored over Machine B, we compare their costs. Machine A costs $323,000 with an annual operating cost of $2.40/ton, while Machine B costs $178,000 with an annual operating cost of $8.00/ton. The machines have useful lives of 10 years and 6 years, respectively, and the minimum attractive rate of return (MARR) is 18% per year.
By calculating the equivalent annual costs (EAC) for each machine using the given formula and comparing them, we can determine the point at which Machine A becomes more favorable. However, specific values for the discounting factors and the tons per year needed are missing, making it impossible to provide an exact answer.
Learn more about investment analysis here: brainly.com/question/32546870
#SPJ11
The following equation models the amount of aspirin in a person's blood in milligrams, t hours after ingesting a dose: f(t) = 300 * (1/2) ^ (1/30)
a. How much aspirin is in the dose?
b. Find and interpret ƒ (60).
c. When will the aspirin level be less than 10 milligrams?
A. The amount of aspirin in the dose is 22.066 milligrams.
B. ƒ (60) = 7.483 milligrams
This means that 60 hours after ingesting a dose of 22.066 milligrams of aspirin, the amount of aspirin in the person's blood will be 7.483 milligrams.
C. The aspirin level will be less than 10 milligrams after approximately 45.06 hours.
a. The initial amount of aspirin in the dose can be found by evaluating f(0):
f(0) = 300 * (1/2)^(1/30) ≈ 22.066
Therefore, there are approximately 22.066 milligrams of aspirin in the dose.
b. We can find f(60) by substituting t = 60 into the equation:
f(60) = 300 * (1/2)^(1/30 * 60) ≈ 7.483
Therefore, there are approximately 7.483 milligrams of aspirin in the person's blood 60 hours after ingesting the dose. This is significantly less than the initial amount of 22.066 milligrams, indicating that the aspirin is being metabolized and eliminated from the body over time.
c. We want to solve for t when f(t) < 10:
300 * (1/2)^(1/30t) < 10
Dividing both sides by 300:
(1/2)^(1/30t) < 1/30
Taking the natural logarithm of both sides:
ln[(1/2)^(1/30t)] < ln(1/30)
Using the properties of logarithms:
(1/30t)ln(1/2) < ln(1/30)
Simplifying:
-0.6931t < ln(1/30)
Dividing both sides by -0.6931 (which is ln(1/2)):
t > ln(1/30) / (-0.6931)
t > 45.06
Therefore, the aspirin level will be less than 10 milligrams after approximately 45.06 hours.
Learn more about aspirin at https://brainly.com/question/20877853
#SPJ11
Use the order of operations to simplify the following expression.
11 - 3 × 2.4 + 5
8.8
1.2
24.2
59.2
Please help ASAP
Find all the values of k so that the quadratic expression factors into two binomials. Explain the process used to find the values.
3x^2 + kx - 8
Answer:
Any value of kStep-by-step explanation:
The quadratic expression can be factored into two binomials if it has two real roots.
Two real roots possible with non-negative discriminant:
D ≥ 0As D = b² - 4ac, we get the following inequality
k² - 4(3)(-8) ≥ 0k² + 96 ≥ 0k² ≥ - 96This is true for any value of k
k ∈ (- ∞, + ∞)Answer:
(-∞, ∞) or \(k \in \mathbb{R}\)
Step-by-step explanation:
Binomial: two terms connected by a plus or minus sign.
Discriminant
\(b^2-4ac\quad\textsf{when}\:ax^2+bx+c=0\)
\(\textsf{when }\:b^2-4ac > 0 \implies \textsf{two real roots}\)
\(\textsf{when }\:b^2-4ac=0 \implies \textsf{one real root}\)
\(\textsf{when }\:b^2-4ac < 0 \implies \textsf{no real roots}\)
If a quadratic expression factors into two binomials, it will have two real roots. Therefore, the discriminant will be greater than zero.
Given quadratic expression:
\(3x^2+kx-8\)
\(\implies a=3, \quad b=k, \quad c=-8\)
Substitute the values of a, b and c into the discriminant, set it to > 0:
\(\implies k^2-4(3)(-8) > 0\)
\(\implies k^2+96 > 0\)
As k² ≥ 0 for all real numbers,
\(\implies k^2+96 \geq 96\)
Therefore, the values of k are (-∞, ∞) or \(k \in \mathbb{R}\)
Determine which set of side measurements could be used to form a right triangle.
O 3, 11, 20
0 5, 9, 17
O 6, 7,8
0 6, 8, 10
The set of side measurements that could be used to form a right triangle are (d) 6, 8, 10
How to determine the set of side measurements that could be used to form a right triangle.From the question, we have the following parameters that can be used in our computation:
The list of options
The set of side measurements that could be used to form a right triangle can be calculated using the pythagorean theorem
a² = b² + c²
So, we have
O 3, 11, 20
20² = 3² + 11²
400 = 130 -- false
O 5, 9, 17
17² = 5² + 9²
289 = 106 -- false
O 6, 7, 8
8² = 6² + 7²
64 = 85-- false
O 6, 8, 10
10² = 6² + 8²
100= 100 - - true
Hence, the set of side measurements that could be used to form a right triangle are (d) 6, 8, 10
Read more about right triangle at
https://brainly.com/question/2437195
#SPJ1
What number would you need to multiply the 3 by in the quivalent ratios below
Answer:
3.0
Step-by-step explanation:
bcbcbbcbc
The picturegram shows information about CDs sold in a shop.
1 . How manny CDs were sold on Wednesday | Key = 3 |
2. How manny more CDs were sold on Thursday than Wednesday?
**If you know the answer let me know!**
Answer:
i believe number 1 is 18 and number 2 is 9.
Step-by-step explanation:
if one full circle represents 6 CDs then on wednesday 18 Cds were sold because 6+6+6=18 and on thursday they sold 9 more Cds than on wednesday because they sold 6+6+6+6+3 which equals 9.
I need help with step 3
\(f(x) = ( \frac{1}{4} ) {}^{x} \)
\(f(0) = ( \frac{1}{4} ) {}^{0} \)
\(f(0) = 1\)
\(f(1) = ( \frac{1}{4} ) {}^{1} \)
\(f(1) = \frac{1}{4} \)
\(f(2) = ( \frac{1}{4} ) {}^{2} \)
\(f(2) = \frac{1}{16} \)
#IfWrongPleaseReport
I need help with 1-3 and 5-6 pls
(note - an equation contains an is equal to sign [=] and if a problem does not have an is equal to sign then it becomes an expression)
Step-by-step explanation:2n°, 55°, 49°just add all of them making an equation like
2n° + 55° + 49° = 180° (angle sum property)
2n° + 104 = 108°
2n° = 108° - 104
i.e., 2n° = 76°
n = 76/2 therefore,
n = 38
If n is a whole number, and 0.01 is between 1/n and 1/n+2, what is the value of n?
The value of n is 99
Integers are the set of numbers including all natural numbers and 0. They are part of the real numbers that do not include fractions, decimals, or negative numbers. Counting numbers are also considered whole numbers.
Natural numbers together with zero (0) are referred to as whole numbers. We know that natural numbers refer to the set of counting numbers starting from 1, 2, 3, 4 and so on. Simply put, integers are a set of numbers without fractions, decimals, or even negative integers. It is a collection of positive integers and zero. Or we can say that integers are the set of non-negative integers.
Integers are the set of natural numbers togethe with the number 0. In mathematics, the set of integers is given as {0, 1, 2, 3, ...}, denoted by the symbol W.
W = {0, 1, 2, 3, 4, …}
All natural numbers are integers.
All integers are real numbers.
It is given that If n a whole number, and 0.01 is between 1/n and 1/n+2, then we need to find the value of n.
1/n+2 < 0.01 < 1/n
1/n+2 < 1/100 < 1/n
n< 100 < n +2
Put n = 99, then we get
99 < 100 < 101
Hence the value of n is 99.
Learn more about whole numbers here:
https://brainly.com/question/28052750
#SPJ4
find the gradient of line segment AB A is point (-3,3) B is point(-1,-1)
Answer:
\(m=-2\)
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
Brackets Parenthesis Exponents Multiplication Division Addition Subtraction Left to RightAlgebra I
Slope (Gradient) Formula: \(m=\frac{y_2-y_1}{x_2-x_1}\)Step-by-step explanation:
Step 1: Define
A (-3, 3)
B (-1, -1)
Step 2: Find slope m
Substitute: \(m=\frac{-1-3}{-1+3}\)Subtract/Add: \(m=\frac{-4}{2}\)Divide: \(m=-2\)(L2) The Circumcenter Theorem states that the circumcenter of a triangle is equidistant from each _____.
(L2) The Circumcenter Theorem states that the circumcenter of a triangle is equidistant from each vertex of the triangle.
The Circumcenter Theorem is a fundamental concept in geometry that states that the circumcenter of a triangle is equidistant from each of its vertices. In other words, the circumcenter is the point where the perpendicular bisectors of the sides of a triangle intersect.
The circumcenter plays a crucial role in the geometry of triangles, as it is the center of the circumcircle, which is the circle that passes through all three vertices of the triangle.
The circumcircle has several important properties, such as the fact that the length of the circumcircle's circumference is equal to twice the length of the triangle's longest side.
for such more question on Circumcenter
https://brainly.com/question/20489969
#SPJ11
what is total area of the regions between the curves y=6x^2-9x and y=3x
The total area of the regions between the curves is 8 square units
Calculating the total area of the regions between the curvesFrom the question, we have the following parameters that can be used in our computation:
y = 6x² - 9x and y = 3x
With the use of graphs, the curves intersect ar
x = 0 and x = 2
So, the area of the regions between the curves is
Area = ∫6x² - 9x - 3x
This gives
Area = ∫6x² - 12x
Integrate
Area = 2(x - 3)x²
Recall that x = 0 and x = 2
So, we have
Area = 2(0 - 3) * 0² - 2(2 - 3) * 2²
Evaluate
Area = 8
Hence, the total area of the regions between the curves is 8 square units
Read more about area at
https://brainly.com/question/15122151
#SPJ1
The table below shows that the number of miles driven by Parker is directly
proportional to the number of gallons he used.
Gallons Used Miles Driven
34
41
45
1305.6
1574.4
1728
How many miles can he travel on 44.2 gallons of gas?
The number of miles he can travel on 44.2 gallons of gas would be = 1697.28 miles
How to calculate the number of mile?The table shows that there is direct proportional relationship between the number of miles traveled and the number of gallons used by Parker. That is increase in the number of mile = increase in the number of gallons.
If 34 gallons = 1305.6 miles
44.2 gallons = X miles
Make X miles the subject of formula;
X miles = 44.2 × 1305.6/34
= 57707.52/34
= 1697.28 miles
Learn more about multiplication here:
https://brainly.com/question/28768606
#SPJ1
Which of the equations are linear equations? Explain reasoning.
5x − 4y = 3
3x + 3y = 2
2x2−4y2=11
Answer:
5x - 4y = 3 and 3x + 3y = 2 are linear equations.
Step-by-step explanation:
Linear equations:
Linear equations are algebraic equations with highest power of the variable 1.
So, 5x - 4y = 3 and 3x + 3y = 2 are linear equations.
Evaluate the surface integral. ∫∫s z^2 ds, S is the part of the paraboloid x = y^2 + z^2 given vy ≤ x ≤ 4
according to question the surface integral is (32π - 192)/15.
To evaluate the surface integral, we need to parameterize the surface and find the surface element ds.
Let's consider the parameterization:
x = y^2 + z^2
y = y
z = z
The surface element can be found as:
ds = √(1 + (dx/dy)^2 + (dx/dz)^2) dy dz
ds = √(1 + 4y^2) dy dz
Now, we can rewrite the integral as:
∫∫s z^2 ds = ∫∫R (y^2 + z^2)^2 √(1 + 4y^2) dy dz
where R is the projection of the surface S onto the yz-plane, which is the region 0 ≤ y ≤ 2, -√(4 - y^2) ≤ z ≤ √(4 - y^2).
Let's evaluate the integral:
∫∫s z^2 ds = ∫0^2 ∫-√(4-y^2)^√(4-y^2) (y^2 + z^2)^2 √(1 + 4y^2) dz dy
Using cylindrical coordinates, we can rewrite the integral as:
∫0^2 ∫0^π/2 ∫0^2r (r^2 cos^2θ + r^2 sin^2θ)^2 r √(1 + 4r^2 sin^2θ) dr dθ dy
Simplifying and solving the integral, we get:
∫∫s z^2 ds = (32π - 192)/15
To know more about coordinates visit:
brainly.com/question/22261383
#SPJ11
Write the equation of the line in slope-intercept form. Explain how you found the slope and the y-intercept .
Answer:
sry i dont know........
the data provide strong evidence that the four mean scores (representing the four teaching strategies) are not all equal.
The data strongly suggests that the four mean scores, representing the four teaching strategies, are not all equal.
The statement implies that based on the data, there is strong evidence to support the conclusion that the mean scores of the four teaching strategies are not equal. In other words, there is a significant difference between the average performance or outcomes associated with each teaching strategy.
This conclusion can be drawn by conducting a statistical analysis of the data, such as performing a hypothesis test or calculating the confidence intervals. These methods help determine if the observed differences in mean scores are statistically significant or likely to occur by chance.
If the analysis reveals a low p-value or the confidence intervals do not overlap significantly, it suggests that the observed differences in mean scores are not likely due to random variation but rather reflect true disparities between the teaching strategies. This provides strong evidence that the mean scores for the four teaching strategies are not equal.
To know more about four teaching strategies,
https://brainly.com/question/31384693
#SPJ11
I need help please..
The perimeter and the area of each composite figure is summarized below:
Case 1: p = 2 · (4√2 + 5), A = 20
Case 2: p = 28, A = 16
Case 3: p = 4 · (√13 + 2), A = 48
How to determine the perimeter and area of a composite figure
In this problem we find three cases of composite figures, whose perimeters and areas should be found. The perimeter is the sum of all side lengths and the area is the sum of areas of simple figures. The area formulas needed are introduced below:
Triangle
A = 0.5 · b · h
Rectangle
A = b · h
Where:
A - Area of the figure, in square units.b - Base, in unitsh - Height, in unitsThe length of oblique lines are determined by Pythagorean theorem, whereas lengths of horizontal and vertical lines are found by direct inspection. Now we proceed to find the perimeter and area of each figure:
Case 1:
p = 4 · √(2² + 2²) + 2 · 5
p = 4√8 + 10
p = 8√2 + 10
p = 2 · (4√2 + 5)
A = 4 · 5
A = 20
Case 2:
p = 2 · 6 + 4 · 1 + 4 · 2 + 2 · 2
p = 12 + 4 + 8 + 4
p = 28
A = 2 · 6 · 1 + 2²
A = 12 + 4
A = 16
Case 3:
p = 4 · √(2² + 3²) + 2 · 4
p = 4√13 + 8
p = 4 · (√13 + 2)
A = 4 · 6 + 4 · 0.5 · 2 · 3
A = 24 + 24
A = 48
To learn more on perimeters and areas: https://brainly.com/question/11957651
#SPJ1
The answer is 2.95 (correct to 2 decimal places)
List 5 numbers that could have been rounded up to give 2.95
Answer:
2.947
2.946
2.948
2.949
2.945
Step-by-step explanation:
all decimal points are 5 or greater so you round up.
Answer:2.9477843782957987827878
Step-by-step explanation: