For the equations of the plane passing through (0,0,0), (4,0,6), and (-4,-1,2), we found the normal vector by taking the cross product of two vectors, and then substituted a point to find the value of d. The equation is 6x - 28y - 4z = 0.
To find an equation of the plane, we need to find the normal vector to the plane and a point on the plane. We can find the normal vector by taking the cross product of two vectors in the plane. One way to do this is to take the vector difference between two of the given points. For example, we can take the vectors from (0,0,0) to (4,0,6) and from (0,0,0) to (-4,-1,2):
v1 = <4, 0, 6>
v2 = <-4, -1, 2>
The normal vector can be found by taking the cross product of these vectors:
n = v1 x v2
= <(0-6)(-1)-(2)(0), (6)(-4)-(2)(4), (4)(-1)-(0-6)>
= <6, -28, -4>
So the equation of the plane is of the form:
6x - 28y - 4z = d
To find the value of d, we can substitute any of the given points on the
plane.
Let's use (0,0,0):
6(0) - 28(0) - 4(0) = d
d = 0
Therefore, the equation of the plane is:
6x - 28y - 4z = 0
know more about normal vector here: brainly.com/question/31832086
#SPJ11
Quantitative Problem 1t You deposit \( \$ 2,300 \) into an account that pays \( 6 \% \) per year. Your plan is to withdraw this amount at the end of 5 years to use for a down payment on a new car. How
You will be able to withdraw approximately $3,076.32 at the end of 5 years.
To calculate the amount you will be able to withdraw at the end of 5 years, we can use the future value formula for compound interest.
The formula for calculating the future value (FV) of a present value (PV) invested at an annual interest rate (r) for a certain number of years (t) is:
\(FV = PV * (1 + r)^t\)
Given:
PV = $2,300
r = 6% = 0.06 (decimal representation)
t = 5 years
Substituting these values into the formula, we get:
FV = $2,300 * \((1 + 0.06)^5\)
Calculating the expression inside the parentheses:
\((1 + 0.06)^5 = 1.338225\)
Multiplying the present value by this factor:
FV = $2,300 * 1.338225
FV ≈ $3,076.32
Therefore, you will be able to withdraw approximately $3,076.32 at the end of 5 years.
Learn more about compound interest here:
https://brainly.com/question/14295570
#SPJ11
You deposit $2,300 into an account that pays 6% per year. Your plan is to withdraw this amount at the end of 5 years to use for a down payment on a new car. How much will you be able to withdraw at the end of 5 years? Do not round intermediate calculations. Round your answer to the nearest cent
Identify the missing numbers.
____ -2 -7 -12 -17 ____
Answer:
3,-2,-7,-12,-17,-22
when going up add, when going down subtract.
Example: -2+5=3
-17-5=-22
steven has 5 more marbles than jon has, suppose s is the number of marbles that steven has, and j is the number of marbles that jon has. a. write an equation to describe how many marbles steven has. b. write a different equation to describe how many marbles jon has.
15x-7=2+12x I need help with this
Answer:
\( \huge{ \boxed{ \bold{ \tt{x = 3}}}}\)
♁ Question : Solve for x15x - 7 = 2 + 12x♁ Step - by - step explanation \( \text{15x - 7 = 2 + 12x}\)Move 12x to L.H.S ( Left Hand Side ) and change it's sign
➛\( \sf{15x - 12x - 7 = 2}\)
Move 7 to R.H.S ( Right Hand Side) and change it's sign
➛\( \sf{15x - 12x = 2 + 7}\)
Subtract 12x from 15x
Remember that only coefficients of like terms can be added or subtracted.
➛\( \sf{3x = 2 + 7}\)
Add the numbers : 2 and 7
➛\( \sf{3x = 9}\)
Divide both sides by 3
➛ \( \sf{ \frac{3x}{3} = \frac{9}{3}} \)
➛ \( \boxed{ \bold{ \sf{x = 3}}}\)
The value of x is \( \boxed{ \sf{3}}\)
✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄
☄ Now, let's check whether the value of x is 3 or not!
☥ Verification :\( \sf{15x - 7 = 2 + 12x}\)
\( \dashrightarrow{ \sf{15 \times 3 - 7 = 2 + 12 \times 3}}\)
\( \dashrightarrow{ \sf{45 - 7 = 2 + 36}}\)
\( \dashrightarrow{ \sf{38 = 38}}\)
L.H.S = R.H.S ( Hence , the value of x is 3 ).
✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄
✒ Rules for solving an equation :If an equation contains fractions ,multiply each term by the L.C.M of denominators.Remove the brackets , if any.Collect the terms with the variable to the left hand side and constant terms to the right hand side by changing their sign ' + ' into ' - ' and ' - ' into ' + ' .Simplify and get the single term on each side.Divide each side by the coefficient of variable and then get the value of variable.Hope I helped!
Have a wonderful time ! ツ
~TheAnimeGirl
2. How many checks must a customer write per month before the new plan is cheaper than the old plan? and new plan? 3. What formula/equations can be formed to find the cost for any number of checks for the old cheaper for a customer who writes 10 checks per month? 1. Compute the cost of 10 checks under the old plan and under the new plan. Which plan is check will cost 8 cents. The bank claims the new plan will save the customer money. Plus 15 cents for each check announces that it will change its monthly fee to $3 and that each Problem #3 A bank that has been charging a monthly service fee of $2 for checking accounts
The old plan is cheaper for a customer who writes 10 checks per month.
To determine how many checks a customer must write per month before the new plan is cheaper than the old plan, we need to set up an equation to compare the two plans. Let x be the number of checks written per month. The cost of the old plan is given by:
C_old = 0.08x + 2
The cost of the new plan is given by:
C_new = 3 + 0.15x
To find out when the new plan becomes cheaper, we need to set the two costs equal to each other and solve for x:
0.08x + 2 = 3 + 0.15x
0.07x = 1
x ≈ 14.29
Therefore, a customer would need to write 15 checks per month for the new plan to be cheaper than the old plan.
For a customer who writes 10 checks per month, the cost of the old plan is:
C_old = 0.08(10) + 2 = 2.80
The cost of the new plan is:
C_new = 3 + 0.15(10) = 4.50
Therefore, the old plan is cheaper for a customer who writes 10 checks per month.
The formula for the cost of any number of checks for the old plan is:
C_old = 0.08x + 2
where x is the number of checks written per month
learn more about "Cost":-https://brainly.com/question/19104371
#SPJ11
the average score of 100 students taking a statistics final was 78 with a standard deviation of 7. assuming a normal distribution, what is the probability that a student scored greater than 66
The probability that a student scored greater than 66 is approximately 0.9938, assuming a normal distribution.
We can use the standard normal distribution to find the probability that a student scored greater than 66. To do this, we first need to standardize the score using the formula:
z = (x - μ) / σ
where x is the score we're interested in (66), μ is the population mean (78), and σ is the population standard deviation (7).
Plugging in the values, we get:
z = (66 - 78) / 7 = -1.71
Using a standard normal distribution table or a calculator, we can find the probability that a z-score is greater than -1.71, which is approximately 0.9938. Therefore, the probability that a student scored greater than 66 is approximately 0.9938.
For more questions like Probability visit the link below:
https://brainly.com/question/23178730
#SPJ11
Derivations (20 marks): For each of the questions in this section provide a derivation. Other methods will receive no credit i. ∃x(Fx & Gx) ⊢ ∃xFx & ∃xGx (5 marks)
ii. ¬ 3x(Px v Qx) ⊢ Vx ¬ Px (5 marks) iii. ¬ Vx(Fx → Gx) v 3xFx (10 marks; Hint: To derive this theorem use RA.)
¬ Vx(Fx → Gx) v 3xFx ⊢ Fx → Gx [1-5, Modus Ponens]
i. ∃x(Fx & Gx) ⊢ ∃xFx & ∃xGx (5 marks)
Proof:
1. ∃x(Fx & Gx) [Premise]
2. Fx & Gx [∃-Elimination, 1]
3. ∃xFx [∃-Introduction, 2]
4. ∃xGx [∃-Introduction, 2]
5. ∃xFx & ∃xGx [Conjunction Introduction, 3 and 4]
6. ∃x(Fx & Gx) ⊢ ∃xFx & ∃xGx [1-5, Modus Ponens]
ii. ¬ 3x(Px v Qx) ⊢ Vx ¬ Px (5 marks)
Proof:
1. ¬ 3x(Px v Qx) [Premise]
2. ¬ Px v ¬ Qx [DeMorgan’s Law, 1]
3. Vx ¬ Px [∀-Introduction, 2]
4. ¬ 3x(Px v Qx) ⊢ Vx ¬ Px [1-3, Modus Ponens]
iii. ¬ Vx(Fx → Gx) v 3xFx (10 marks; Hint: To derive this theorem use RA.)
Proof:
1. ¬ Vx(Fx → Gx) v 3xFx [Premise]
2. (¬ Vx(Fx → Gx) v 3xFx) → (¬ Vx(Fx → Gx) v Fx) [Implication Introduction]
3. ¬ Vx(Fx → Gx) v Fx [Resolution, 1, 2]
4. (¬ Vx(Fx → Gx) v Fx) → (Fx → Gx) [Implication Introduction]
5. Fx → Gx [Resolution, 3, 4]
6. ¬ Vx(Fx → Gx) v 3xFx ⊢ Fx → Gx [1-5, Modus Ponens]
Learn more about Derivations
brainly.com/question/30365299
#SPJ11
the ________ is a line graph that plots the cumulative relative frequency distribution.
The ogive is a line graph that plots the cumulative relative frequency distribution.
An ogive, also known as a cumulative frequency polygon, is a line graph that shows the cumulative frequency distribution of a data set. The cumulative frequency is calculated by adding up the frequencies of each value up to a certain point in the data set.
The cumulative relative frequency is calculated by dividing the cumulative frequency by the total number of observations in the data set. The ogive plots these cumulative relative frequencies against the corresponding values in the data set, usually on the x-axis.
By plotting the cumulative relative frequencies, the ogive shows how the data is distributed over the entire range of values. It can be used to identify patterns in the data, such as whether it is skewed or symmetrical. It is also useful for determining percentiles, as the percentile for a given value can be read directly from the ogive.
Overall, the ogive is a helpful tool for summarizing and visualizing the distribution of a data set, particularly when dealing with large data sets or complex distributions.
Learn more about cumulative relative frequency at https://brainly.com/question/30671485
#SPJ11
Andre’s school orders some new supplies for the chemistry lab. The online store shows a pack of 10 test tubes costs $4 less than a set of nested beakers. In order to fully equip the lab, the school orders 12 sets of beakers and 8 packs of test tubes.
Write an equation that shows the cost of a pack of test tubes, , in terms of the cost of a set of beakers, .
Answer:
70
Step-by-step explanation:
deminsions of a swedish flag in inches
Answer: 24.75 x 1.5 x 1.5 inches
Step-by-step explanation: Hope this helps!
What is the partial effect of x1 on y for the following linear regression model? y=1+0.85x1−0.2x12+0.5x2+0.1x1x2+ε 0.85−0.4×1 0.85 0.85+0.1×2 0.85−0.4×1+0.1×2
The final expression for the partial effect of x1 on y is 0.85 - 0.4x1 + 0.1x2. To find the partial effect of x1 on y in the given linear regression model, we need to take the derivative of y with respect to x1.
Given the linear regression model:
y = 1 + 0.85x1 - 0.2x1^2 + 0.5x2 + 0.1x1x2 + ε
Taking the derivative of y with respect to x1, we get:
∂y/∂x1 = 0.85 - 0.4x1 + 0.1x2
Therefore, the partial effect of x1 on y is represented by the expression 0.85 - 0.4x1 + 0.1x2.
This means that for every one unit increase in x1, the value of y is expected to change by (0.85 - 0.4x1 + 0.1x2) units, while holding all other variables constant.
It's important to note that the partial effect of x1 on y is not a fixed value but rather a function that depends on the values of x1 and x2. The coefficient of x1 in the linear regression model (0.85) represents the baseline effect, while the terms involving x1^2, x2, and x1x2 capture additional effects that modify the partial effect.
So, the final expression for the partial effect of x1 on y is 0.85 - 0.4x1 + 0.1x2.
Learn more about derivatives here:
https://brainly.com/question/29144258
#SPJ11
1. Let the distribution of X be the normal distribution N (μ, σ2) and let Y = aX + b. Prove that Y is distributed as N (aμ + b, a2σ2).
2. Let X and Y be two independent random variables with E|X| < [infinity], E|Y| < [infinity] and E|XY| < [infinity]. Prove that E[XY] = E[X]E[Y].
1 Y is distributed as N(aμ + b, a^2σ^2), as desired.
2 We have shown that under these conditions, E[XY] = E[X]E[Y].
To prove that Y is distributed as N(aμ + b, a^2σ^2), we need to show that the mean and variance of Y match those of a normal distribution with parameters aμ + b and a^2σ^2, respectively.
First, let's find the mean of Y:
E(Y) = E(aX + b) = aE(X) + b = aμ + b
Next, let's find the variance of Y:
Var(Y) = Var(aX + b) = a^2Var(X) = a^2σ^2
Therefore, Y is distributed as N(aμ + b, a^2σ^2), as desired.
We can use the definition of covariance to prove that E[XY] = E[X]E[Y]. By the properties of expected value, we know that:
E[XY] = ∫∫ xy f(x,y) dxdy
where f(x,y) is the joint probability density function of X and Y.
Then, we can use the fact that X and Y are independent to simplify the expression:
E[XY] = ∫∫ xy f(x) f(y) dxdy
= ∫ x f(x) dx ∫ y f(y) dy
= E[X]E[Y]
where f(x) and f(y) are the marginal probability density functions of X and Y, respectively.
Therefore, we have shown that under these conditions, E[XY] = E[X]E[Y].
Learn more about distributed here:
https://brainly.com/question/29664127
#SPJ11
Help I will mark brainliest
Answer:
A.{7}^{15}
\(4.7475615 {}^{12}\)
Step-by-step explanation:
\(( {7}^{5} ) {}^{3} = {7}^{5} =(16807) {}^{3}=4.7475615 {}^{12} \)
Hope this helps ;) ❤❤❤
The red snake is 12 inches long. It is 3 times as long as the green snake. Let n represent the green snake. Which number sentence below will solve for n?
A 3x6 inches = 18 inches
B 12 inches x 3 = 36 inches
C 12 inches divided 3= 4 inches
D 12 inches divided 4 = 3 inches
Answer: Your answer would be C.
Step-by-step explanation:
4 x 3 is 12 so, if you divide the 12 by 3 you will get 4 making C your answer.
what is the standard deviation of the number of large earthquakes that occur in the united states in a given year?
Standard deviation = square root of [(sum of (each observation - mean)^2) / (number of observations - 1)]. To calculate The standard deviation of the number of large earthquakes in the United States in a given year, the large number of earthquakes that occurred in the country over some time.
The calculation of the average number of large earthquakes in the USA through a standard equation:
Standard deviation = square root of [(sum of (each observation - mean)^2) / (number of observations - 1)]
According to this, each observation is the number of earthquakes that occurred in the USA in a year and the number of observations is the number of years.
It has lower worth of standard deviation on earthquakes which differs from year to year. They are complex. However, understanding the calculation is based on the typical range of variation we might expect to see in the number of large earthquakes.
To know more about the standard deviation
brainly.com/question/23907081
#SPJ4
The sum of the lengths of the sides of a two-dimensional figures is called the _____ of the figure.
Is "perimeter". The perimeter is the sum of all the sides of a two-dimensional figure. For example, if you have a rectangle with sides of length 3 and 5, then the perimeter would be 3+3+5+5 = 16.
In explanation, the perimeter is an important measure of a two-dimensional figure because it gives us an idea of how much boundary or fence we would need if we were to enclose the figure. Additionally, the perimeter can be used to calculate other properties of a figure such as its area or volume.
the perimeter is an essential concept in geometry that helps us measure the boundaries of two-dimensional figures.
Perimeter refers to the total length of the sides or edges of a two-dimensional shape. To calculate the perimeter, you simply add the lengths of all the sides of the figure.
Conclusion: In summary, the term you are looking for is "perimeter," which represents the total length of the sides of a two-dimensional figure.
To know more about perimeter, visit:
https://brainly.com/question/6465134
#SPJ11
if you understand quadratics:
We may conclude after answering the presented question that expression Therefore, the blank should be filled with 36.
what is expression ?An expression in mathematics is a collection of representations, numbers, and conglomerates that mimic a statistical correlation or regularity. A real number, a mutable, or a mix of the two can be used as an expression. Mathematical operators include addition, subtraction, fast spread, division, and exponentiation. Expressions are often used in arithmetic, mathematics, and form. They are employed in the depiction of mathematical formulas, the solving of equations, and the simplification of mathematical relationships.
To make the expression a perfect square, we need to add the square of half the coefficient of n.
Half of 12 is 6, and the square of 6 is 36.
So, \(n^2 + 12n + 36\) is a perfect square.
Therefore, the blank should be filled with 36.
To know more about expression visit :-
https://brainly.com/question/14083225
#SPJ1
ALRIGHTY I NEED HELP AGAIN! YOU'LL GET BRAINLIEST IF YOU'RE CORRECT!
Step-by-step explanation:
third quadrant ( option C) is the correct answer.
hope this helps you.
Answer:it’s B cutie
Step-by-step explanation:
what is 28=-k+16-2k-9
Answer:
k = -7
Step-by-step explanation:
Let's put the side with the variables on the left.
-k+16-2k-9=28
Now we need to isolate the variable, which is k in this case.
>> Isolating the variable <<Step 1: Simplify as much as you can.-k+16-2k-9=28
-k-2k+16-9=28
-3k+7=28
Step 2: Subtract 6 from both sides(-3k+5) -7 = 28 -7
-3k = 21
Step 3: divide both sides by -3k = -21/3
That's your answer:
k = -7
Write the relation as a set of ordered pairs. A relation. An arrow goes from 0 to 2, 2 to 6, and 4 to 10. a. ordered pairs: {(0, 2), (2, 6), (4, 10)} b. ordered pairs: {(2, 0), (6, 2), (10, 4)} c. ordered pairs: {(0, 2), (6, 2), (10, 4)} d. ordered pairs: {(2, 0), (2, 6), (4, 10)} Please select the best answer from the choices provided A B C D
The ordered pairs are {(0, 2), (2, 6), (4, 10)}, option A is correct.
What are the Ordered pairs in the set?A set of ordered pairs (x, y) that have x in set A and y in set B make up a function f from set A to set B.
An ordered pair in f is (x, y).
where there is precisely one y ∈ B, for every x ∈ A.
Given that an arrow goes from 0 to 2, 2 to 6, and 4 to 10,
to write the ordered pairs,
the relation of the arrow is 0 to 2, 2 to 6, and 4 to 10
the pairs are (0, 2)
(2, 6)
(4, 10)
pairs are {(0, 2), (2, 6), (4, 10)}
Hence option A is correct.
Learn more about the Ordered pairs in a set;
brainly.com/question/1090891
#SPJ1
[PLEASE HELP ILL GIVE BRAINLIEST
PLEASE SHOW WORK
elative frequency is typically used with smaller, but not larger, data sets
Relative frequency can be used with data sets of any size.
We have,
Relative frequency can be used with data sets of any size, whether they are small or large.
Relative frequency is a concept used in statistics to describe the proportion or percentage of times an event occurs relative to the total number of observations.
To calculate the relative frequency of an event, you divide the frequency of that event by the total number of observations in the data set.
This calculation can be applied to data sets of any size.
For example, let's say you have a data set of 100 observations, and you are interested in calculating the relative frequency of a specific event that occurred 20 times.
The relative frequency would be 20/100 = 0.2 or 20%.
Similarly, if you have a larger data set with thousands or millions of observations, you can still calculate the relative frequency by dividing the frequency of the event by the total number of observations.
Thus,
Relative frequency can be used with data sets of any size.
Learn more about relative frequency here:
https://brainly.com/question/28342015
#SPJ4
What is the measure of ∠xbc? m∠xbc = m∠bac m∠bca 3p â€"" 6 = p 4 84 3p â€"" 6 = p 88 2p â€"" 6 = 88 2p = 94 m∠xbc = °
Answer:
m∠XBC = 135
Step-by-step explanation:
What is the measure of ∠XBC?
m∠XBC = m∠BAC + m∠BCA
3p – 6 = p + 4 + 84
3p – 6 = p + 88
2p – 6 = 88
2p = 94
From the simplified expression, we need to find the value of p first
From the last line we can see that;
2p =94
Divide both sides by 2:
2p/2 =94/2
p = 47
From the expression, m∠XBC =3p-6
m∠XBC = 3(47)-6
m∠XBC = 141 -6
m∠XBC = 135
Hence the measure of m∠XBC is 135
State the property that justifies the following statement.
If 7(x-3)=35, then 35=7(x-3).
The property that justifies the following statement, if 7(x-3)=35 then 35=7(x-3) is the symmetric property.
Symmetric property is one of the properties of equality which states that if there is an equality sign (=) between two values or numbers, then the two values will always remain equal even if you change the sides of the values. Therefore if ab = cd, then cd = ab
Hence, according to this property, the left side of the equation can be transferred to the right side and the right side of the equation can be transferred to the left side as the order of the equation can be ignored.
The symmetric property also justifies that if the values on the two sides are not equal, then they will remain unequal even if the sides are changed. That is if ab ≠ cd, then cd ≠ ab.
So, according to the symmetric property, the statement, if 7(x-3)=35 then 35=7(x-3) is valid.
To learn more about the symmetric property, click here:
https://brainly.com/question/8651626
#SPJ4
geometry geometry geometry geometry geometry geometry help me pleasee
Answer:
Step-by-step explanation:
take 74 degree as reference angle
using cos rule
cos 74 =adjacent/hypotenuse
0.275=x/12
12*0.275=x
3.3=x
take 36 degree as reference angle
using sin rule
sin 36=opposite/hypotenuse
0.587=x/11
0.587*11=x
6.457=x
6.5=x
take 39 degree as reference angle
using tan rule
tan 39=opposite/adjacent
0.809=13/x
x=13/0.809
x=16.06
x=16.1
take 16 degree as reference angle
using tan rule
tan 16=opposite /adjacent
0.286=x/14
0.286*14=x
4.00=x
4.0=x
x=
If the solution to a linear system of equations is x=6 and y= 2 and you graphed the two equations, where would the two lines intersect? How do you know?
This is simply because the x coordinate is 6 and the y coordinate is 2.
The line x = 6 is a vertical line in which all points on it have an x coordinate of 6. It goes through 6 on the x axis.
The line y = 2 is horizontal where all points on it have a y coordinate of 2.
The vertical and horizontal lines intersect at (6,2)
exhibit 9-4 a random sample of 16 students selected from the student body of a large university had an average age of 25 years. we want to determine if the average age of all the students at the university is significantly different from 24. assume the distribution of the population of ages is normal with a standard deviation of 2 years. the test statistic is . a. 1.645 b. 2.00 c. 1.96 d. .05
It can be deduced that the mean age is substantially different from 24 at the.05 level of significance.
If the average student age is not substantially different from 24 years, then the null hypothesis is tested, which is:
\(H_{0}\) : μ = 24
If it differs from 24 years, the alternative premise is tested, so:
\(H_{1}\) : μ ≠ 24
The z-distribution is utilized because we have the population's standard deviation. The test statistic comes from:
z = x - μ÷ σ/\(\sqrt{n}\)
The parameters in this issue have the following values:
x(mean) = 25
μ = 24
σ = 2
n=16
As a result, the test statistic's value is:
z = 25-24÷ 2/\(\sqrt{16}\)
z = 2
The probability of a sample mean older than 25 years determines the test's p-value, which is 1 less than the p-value of z = 2.
The p-value for z = 2 in the z-table is 0.9772; 1 - 0.9772 = 0.0228.
Given that the test's p-value is 0.0228 0.05, we may say that:
It can be deduced that the mean age is substantially different from 24 at the.05 level of significance.
To learn more about probability:
https://brainly.com/question/11234923
Allied receives payment from Macy for the amount old on the May 5 purchase; payment is net of returns, allowances, and any cash discount.
The amount of the discount is calculated as 2% of the net amount due ($22,500 - $2,250 - $1,050 = $19,200).
Journal Entries for Sales, Sales Returns, and Sales Allowances Using Perpetual Inventory System and Gross Method for Allied Merchandisers.May 3:
Inventory purchase:
Inventory (Dr) $33,000
Cash (Cr) $33,000
May 5:
Sale of inventory to Macy Company:
Accounts Receivable - Macy Company (Dr) $22,500
Sales (Cr) $22,500
Cost of goods sold:
Cost of Goods Sold (Dr) $16,500
Inventory (Cr) $16,500
May 7:
Return of inventory by Macy Company:
Accounts Receivable - Macy Company (Cr) $2,250
Sales Returns and Allowances (Dr) $2,250
Cost of goods sold (restored units):
Inventory (Dr) $1,650
Cost of Goods Sold (Cr) $1,650
May 8:
Allowance given to Macy Company:
Sales Returns and Allowances (Dr) $1,050
Accounts Receivable - Macy Company (Cr) $1,050
May 15:
Receipt of payment from Macy Company:
Cash (Dr) $21,450
Sales Discount (Dr) $450
Accounts Receivable - Macy Company (Cr) $22,500
The Sales Discount account is used to record the amount of the discount given to Macy Company for paying within the discount period (2/10, n/60). The amount of the discount is calculated as 2% of the net amount due ($22,500 - $2,250 - $1,050 = $19,200).
To know more about discount and sales price, visit:https://brainly.com/question/30667739
#SPJ1
I dont understand this
Answer:
Um I think it wants you to find all of those things listed in the equation or something.
Step-by-step explanation:
Solve the equation: logsx + 3logsx = 1.
{-√5, √5)
{√5)
(-√5)
Ø