Yes, it is possible to draw a plane that contains a line and a point not in the line.
A plane is a flat two-dimensional surface that extends to infinity. Planes are points (0-dimensional), lines (1-dimensional), and the 2-dimensional analogue of 3-dimensional space. The plane has zero thickness, zero curvature, infinite width, and infinite length. It's actually difficult to imagine an airplane in real life. All the flat surfaces of a cube or cuboid, the flat surface of paper are all practical examples of geometric planes.
In any dimensional Euclidean space, a plane is uniquely defined by either: Use three non-collinear points. Use points and lines that are not on this line. Use two different lines that intersect.
Learn more about plane here
https://brainly.com/question/17242320
#SPJ9
what is x if 2x±3=45
\(2x\pm3=45\\2x=42 \vee 2x=48\\x=21 \vee x=24\)
Answer:
x = 21 or 24
Step-by-step explanation:
That ± tells you we are setting up two different equations to solve for x, as both answers can satisfy the equation.
We do 2x + 3 = 45 and 2x - 3 = 45.
Let's solve them each separately.
2x + 3 = 45
subtract 3 from both sides to get 2x on its own:
2x + 3 - 3 = 45 - 3
simplify:
2x + 0 = 42 or 2x = 42
divide both sides by 2 to isolate variable x
(2x / 2) = (42 / 2)
x = 21
2x - 3 = 45
add 3 to both sides to get 2x on its own:
2x - 3 + 3 = 45 + 3
simplify:
2x + 0 = 48 or 2x = 48
divide both sides by 2 to isolate variable x
(2x / 2) = (48 / 2)
x = 24
x = 21, 24 is your answer
f ( x ) = 2 x + 15 , f ( 6 ) =
Answer:
f(6) = 27
Step-by-step explanation:
f(6) means what is the value of f(x) when x = 6
substitute x = 6 into f(x)
f(6) = 2(6) + 15 = 12 + 15 = 27
what is (8/9)^2 pls i need it
Answer: about 0.79
Step-by-step explanation:
First divide 8 by 9 --> (8/9) = about 0.8889
then square that value --> (0.8889)^2 = about 0.79.
PEMDAS is your friend!
please help!!!!!! I will mark brainliest!!!
Answer:
second dot choice thing
Answer:
The second dot that is the answer.
Step-by-step explanation:
hope this helps.
Please help asap, correct answer will get brainliest
Answer:
im not sure if my answer is correct
Consider the equation 3x2−2x+5=0. What are the values of a, b, and c?
Answer:
So a = -2, b = 3 or 2, and c = 5.
Step-by-step explanation:
An equation like this is usually setup as: ax + by + c = 0
So assuming that with 3 x 2 one of the is y you can rearrange:
-2x + 3 x 2 + 5 = 0
So a = -2, b = 3 ( or 2 depending on which one is y), and c = 5.
Use Trigonometric substitution to eliminate the roots 1.1. 164+2 + 1 Use Trigonometric substitution to eliminate the roots 1.1. V64+2 + 1 1.2. V4z2 – 49
To eliminate the roots in 1.1 and 1.2, we can use trigonometric substitution. In 1.1, we can substitute x = 4 sin(theta) to eliminate the root of 4. In 1.2, we can substitute z = 7 sin(theta) to eliminate the root of 7.
1.1. V64+2 + 1 We can substitute x = 4 sin(theta) to eliminate the root of 4. This gives us:
V64+2 + 1 = V(16 sin^2(theta) + 2 + 1) = V16 sin^2(theta) + V3 = 4 sin(theta) V3 1.2. V4z2 – 49
We can substitute z = 7 sin(theta) to eliminate the root of 7. This gives us:
V4z2 – 49 = V4(7 sin^2(theta)) – 49 = V28 sin^2(theta) – 49 = 7 sin(theta) V4 – 7 = 7 sin(theta) (2 – 1) = 7 sin(theta)
Here is a more detailed explanation of the substitution:
In 1.1, we know that the root of 4 is 2. We can substitute x = 4 sin(theta) to eliminate this root. This is because sin(theta) can take on any value between -1 and 1, including 2.
When we substitute x = 4 sin(theta), the expression becomes V64+2 + 1 = V(16 sin^2(theta) + 2 + 1) = V16 sin^2(theta) + V3 = 4 sin(theta) V3
In 1.2, we know that the root of 7 is 7/4. We can substitute z = 7 sin(theta) to eliminate this root. This is because sin(theta) can take on any value between -1 and 1, including 7/4.
When we substitute z = 7 sin(theta), the expression becomes: V4z2 – 49 = V4(7 sin^2(theta)) – 49 = V28 sin^2(theta) – 49 = 7 sin(theta) V4 – 7 = 7 sin(theta)
To know more about root click here
brainly.com/question/16880173
#SPJ11
Develop a single formula you can use to find the profit earned by both the Alcone Company & Besame Beauty for their lip color. Explain why your formula will work for both companies
Answer:
I have no idea!!!!!!!!!!!!!
What is the equation of the line that passes through the point (-5,-3)and has a slope of -3/5 ?
Answer: y = -3/5x - 6
Step-by-step explanation:
There are a few equations that can be used for this, but the simplest one would be y = mx + b
We are given:
y = -3
m = -3/5 (slope)
x = -5
b = ?
Our equation is this, we are solving for b
==> -3 = -3/5 ( -5) + b
==> -3 = -3/5 ( -5) + b ( multiply the brackets)
==> -3 = 3 + b ( subtract 3 to both sides)
==> -6 = b
Now we can make the desired equation in slope intercept form;
y = -3/5x - 6
Hope this helped! Have a great day :D
two curves are orthogonal to each other if their tangent lines are perpendicular at each point of intersection. a family of curves forms orthogonal trajectories with another family of curves if each curve in one family is orthogonal to each curve in the other family. use the following steps a through c to find the orthogonal trajectories of the family of ellipses 2x^2 y^2
The orthogonal trajectories of a family of curves are a new set of curves that intersect the original curves at right angles. To find the orthogonal trajectories of the family of ellipses given by the equation 2x^2 y^2, follow these steps:
Differentiate the equation of the family of ellipses with respect to x or y (whichever is more convenient). In this case, let's differentiate with respect to y: d/dy (2x^2 y^2) = 4x^2y Find the slope of the tangent line to the family of ellipses at any given point by setting the derivative equal to -1 divided by the slope of the tangent line: 4x^2y = -1/m where m represents the slope of the tangent line.
Solve the resulting equation for y in terms of x to obtain the equation of the orthogonal trajectories: y = -1/(4x^2m) By following these steps, you can find the equation of the orthogonal trajectories of the family of ellipses. Differentiate the equation of the family of ellipses with respect to x or y (whichever is more convenient).
To know more about orthogonal visit :
https://brainly.com/question/32196772
#SPJ11
Evaluate m
3
+
n
3
for
m
=
3
,
n
=
2. M
3
+
n
3
for
m
=
3
,
n
=
2.
The value of the given expression is 35 when M = 3 and N = 2.
The given expression is M³ + N³ for M = 3, N = 2.
Thus,
M³ + N³ = 3³ + 2³= 27 + 8= 35.
Therefore, the value of the given expression is 35 when M = 3 and N = 2.
The given expression is M³ + N³ for M = 3, N = 2.
Thus, M³ + N³ = 3³ + 2³ = 27 + 8 = 35.
Therefore, the value of the given expression is 35 when M = 3 and N = 2.
The sum of cubes formula for two numbers is a³ + b³ = (a + b)(a² – ab + b²).
The formula to calculate the sum of the cubes of two numbers is a³ + b³ = (a + b) (a² – ab + b²).
Thus, putting a = m and b = n, we can rewrite the given expression as: M³ + N³ = (M + N)(M² – MN + N²).
Substituting the values of M and N in the formula, we get:
M³ + N³ = (3 + 2) (3² – 3 × 2 + 2²)
= 5 × (9 – 6 + 4)
= 5 × 7
= 35.
Therefore, the value of the given expression is 35 when M = 3 and N = 2.
To know more about expression visit:
https://brainly.com/question/28170201
#SPJ11
first, we form a riemann sum with n rectangles (or subintervals). (i) what is the width of each rectangle? (ii) list the right-hand endpoints of each rectangle. (iii) list the heights of each rectangle. (iv) list the areas of each rectangle. (v) what is the riemann sum with n rectangles? you may use summation notation, but you do not need to.
The Reimann sum with n rectangle will be given as \(\sum^{n-1}_{i = 0} f{(x_i)} \Delta x\)
Let us suppose that f is a non-negative function, defined over a closed interval represented by [a, b].
The integral of f with respect to x signifies the area between the graph of f and X-axis. This area would be called definite integral of a function f from a to b. Then Riemannian method of determining this area is:
“if the area is divided into n rectangles of very small breadth, then it would be simpler to calculate the area of such rectangles and then we can add them up
(i ) The width of each rectangle will be denoted as Δx
Δx = b-a/n,
where , a is lower bound
b is upper bound of the integral
(ii) The right-hand endpoints of each rectangle are refer as \(x_i\) and we can find the right endpoints by \(x_i\) = a + Δx.i
(iii) The height of each rectangle is the value of the function at the upper point of the interval.
a + (b-a)/n for the first rectangle , a + 2(b-a)/n for the second rectangle and so on
(iv) The area of the each rectangle will be
Area = Width × height
=> A = (b-a)/2 × a + i(b-a)/2
(v) The Riemann sum with n rectangles is
Area of rectangle = \(\sum^{n-1}_{i = 0} f{(x_i)} \Delta x\)
Which is also known as Reimann sum
To know more about The Reimann sum here
https://brainly.com/question/28174121
#SPJ4
Find the slope of the line that passes through points (4,5) and (3,-4)?
Answer:
slope=9
Step-by-step explanation:
whole equation=y = 9x – 31
hope that helps
please mark as brainliest if correct
thank you
have a great day/night
5) The length of a rectangle is 5 more than 10 times the width. The perimeter is 230cm find the length and width of the rectangle. (I need help please!)
Answer:
length =105 width =10
Step-by-step explanation:
L=10*W+5
P=230
P=2(L+W)
230=2(10W+5+W)
SOLVE FOR W
W=10
L=10*W+5
=10*10+5
L=105
During an economic crisis, the average value of homes in a community of 36 homes lost $9232 with a standard deviation of $1500. The average home value in the region lost $8700. Was this community of 36 homes unusual?
Yes, this community of 36 homes was unusual during the economic crisis because it lost more value than the average home in the region. The difference between the average value of homes in the community and the region is $5232 ($9232 - $8700), which is greater than one standard deviation ($1500) from the average.
To determine if the community of 36 homes was unusual during the economic crisis, we can use a z-score to compare the average home value loss in the community to the average home value loss in the region.
Step 1: Calculate the z-score.
z = (X - μ) / (σ / √n)
Where:
X = average home value loss in the community ($9232)
μ = average home value loss in the region ($8700)
σ = standard deviation of home value loss in the community ($1500)
n = number of homes in the community (36)
Step 2: Plug in the values and solve for z.
z = ($9232 - $8700) / ($1500 / √36)
z = ($532) / ($1500 / 6)
z = $532 / $250
z = 2.128
Step 3: Interpret the z-score.
A z-score of 2.128 indicates that the average home value loss in the community was 2.128 standard deviations above the regional average. Generally, a z-score greater than 1.96 or less than -1.96 is considered unusual, as it falls in the top or bottom 2.5% of the distribution.
Since the z-score for this community is 2.128, it is considered unusual due to the higher average home value loss compared to the regional average during the economic crisis.
Learn more about Standard Deviation:
brainly.com/question/23907081
#SPJ11
Finding the side length of a cube from its Volume in liters A technical machinist is asked to build a cubical steel tank that will hold 275 L of water. Calculate in meters the smallest possible inside length of the tank. Round your answer to the nearest 0.001 m. X 5 ?
The smallest possible inside length of the cubical steel tank that can hold 275 liters of water is approximately 0.640 meters.
The side length of the cube is found by converting the volume of water from liters to cubic meters, as the unit of measurement for the side length is meters.
Given that the volume of water is 275 liters, we convert it to cubic meters by dividing it by 1000 (1 cubic meter = 1000 liters):
275 liters / 1000 = 0.275 cubic meters
Since a cube has equal side lengths, we find the side length by taking the cube root of the volume. In this case, we find the cube root of 0.275 cubic meters:
∛(0.275) ≈ 0.640
Rounded to the nearest 0.001 meters, the smallest possible inside length of the tank is approximately 0.640 meters.
To know more about smallest possible inside length, refer to the link :
https://brainly.com/question/17304098#
#SPJ11
Use Green's Theorem to calculate the work done by the force F on a particle that is moving counterclockwise around the closed path C. F(x, y) = (9x² + y)i + 3xy²j C: boundary of the region lying between the graphs of y = √x, y = 0 and x = 9
The work done by the force F on a particle that is moving counterclockwise around the closed path C is 3276/7 for given a particle that is moving counterclockwise around the closed path C. F(x, y) = (9x² + y)i + 3xy²j C: boundary of the region lying between the graphs of y = √x, y = 0 and x = 9 & using Green's-Theorem
Green's Theorem states that the line integral around a simple closed curve C of the vector field F is equal to the double integral over the plane area D bounded by C of the curl of F.
It is given by:
∮C F ⋅ dr = ∬D curl F ⋅ dA
Using Green's Theorem, we can calculate the work done by the force F on a particle that is moving counterclockwise around the closed path C.
Given,F(x, y) = (9x² + y)i + 3xy²j
C: boundary of the region lying between the graphs of y = √x, y = 0 and x = 9
Here, D is the region enclosed by the curve C.
Boundaries of D: y = 0 to y = √x; x = 0 to x = 9
We know that ∮C F ⋅ dr = ∬D curl F ⋅ dA
We need to calculate curl F for the given function F(x, y).
So, curl F is given by:curl F = (∂Q/∂x - ∂P/∂y)
Here,P = 9x² + y and
Q = 3xy²
So,∂P/∂y = 1∂Q/∂x
= 6xy
Using above formula,curl F = (∂Q/∂x - ∂P/∂y)
= 6xy - 1
Now, applying Green's Theorem,∮C F ⋅ dr = ∬D curl F ⋅ dA
= ∬D (6xy - 1) dA
Here, D is the region enclosed by the curve C. Boundaries of D: y = 0 to y = √x; x = 0 to x = 9
Now, calculating the integral of the above expression, we get:
∬D (6xy - 1) dA= [3x²y - x]dydx where, y varies from 0 to √x and x varies from 0 to 9.
[3x²y - x]dydx= ∫[0, 9]dx ∫[0, √x] [3x²y - x]dy
= ∫[0, 9]dx [(x³y - x²/2)]|√x0
= ∫[0, 9]dx [(x^5/2 - x²/2)]
So, ∮C F ⋅ dr = ∬D curl F ⋅ dA
= ∬D (6xy - 1) dA
= ∫[0, 9]dx [(x^5/2 - x²/2)]0
= 3276/7
Thus, the work done by the force F on a particle that is moving counterclockwise around the closed path C is 3276/7.
To know more about Green's-Theorem, visit:
brainly.com/question/32715496
#SPJ11
what are the dimensions of a standard piece of paper
A standard piece of paper typically has dimensions of 8.5 inches by 11 inches (21.59 cm by 27.94 cm).
These dimensions refer to the North American standard paper size known as "Letter" or "US Letter." It is commonly used for various purposes such as printing documents, letters, and reports. The dimensions are based on the traditional imperial measurement system, specifically the United States customary units. The longer side of the paper is known as the "letter" or "long" side, while the shorter side is called the "legal" or "short" side.
The 8.5 by 11 inch size provides a versatile and widely accepted format for printing and documentation needs.
To know more about paper sizes and their dimensions, refer here:
https://brainly.com/question/30763919#
#SPJ11
Trevon made 24 of the 40 free throws he attempted last season. What
percent of his attempted free throws did Trevon make? Multiply each side of the proportion by____
Answer:
60%
Step-by-step explanation:
24/40 = .6 x 100 = 60
B. Write a mathematical expression using the information from your table to answer the following questions:
1. What is the mean change in the forecasted high temperatures over the next 7 days? Remember, this can be found by averaging the values in the Difference column for the high temperatures. Show your work and steps. If your answer is not an integer, explain what two integers your answer is between.
2. What is the mean change in the forecasted low temperatures over the next 7 days? Remember, this can be found by averaging the values in the Difference column for the low temperatures. If your answer is not an integer, explain what two integers your answer is between.
Answer:
See below
Step-by-step explanation:
To find the mean, you take each data point, add them together, and divide it by the number of data points.
Problem 1
Mean of High Temperatures = (65+67+54+52+63+69+75)/7 = 445/7 = between 63 and 64
Problem 2
Mean of Low Temperatures = (61+55+37+29+34+42+54)/7 = 312/7 = between 44 and 45
4x – y = 7 3y – 12x = –21
Answer:
y=4x-7 3(4x-7)-21x=-21 12x-21-12x=-21 -21=-21
Step-by-step explanation:
20 POINTS!!!! NUMBER 9 please
Answer:
Step-by-step explanation:
C
Find the slope of the line that passes through points (6,9) and (11,2)
Answer:
\(-1.4\)
Step-by-step explanation:
The slope of a line is the change in the line. It can be found using the formula;
\(\frac{rise}{run}\) or \(\frac{y_2-y_1}{x_2-x_1}\).
Substitute in the given points, and solve for the slope;
\(\frac{y_2-y_1}{x_2-x_1}\\\\= \frac{2-9}{11-6}\\\\= \frac{-7}{5}\\\\= -1.4\)
Answer:
-7/5
Step-by-step explanation:
m=(y2-y1)/(x2-x1)
m=(2-9)/(11-6)
m=-7/5
Can someone help me
what is the maximum distance that trigonometric parallax will work and allowfor a reliable distance determination?
The maximum distance that trigonometric parallax will work and allow for a reliable distance determination is approximately 1,000 parsecs or 3,260 light-years.
Trigonometric parallax is a method used to measure the distances to nearby stars by observing their apparent movement in the sky as Earth orbits the Sun.
This method involves observing a star from two different positions in Earth's orbit, typically six months apart, and measuring the angular shift in the star's position against more distant background stars. The angular shift, or parallax angle, is then used to calculate the distance to the star using basic trigonometry. However, this method becomes less accurate as the distance to the star increases because the parallax angle becomes too small to measure precisely.
One factor limiting the accuracy of trigonometric parallax is the resolving power of telescopes, which restricts the ability to detect very small angles. Improvements in telescope technology and the use of space-based observatories, such as the Gaia satellite, have increased the accuracy and range of trigonometric parallax measurements. However, even with these advancements, the maximum reliable distance for trigonometric parallax remains at around 1,000 parsecs or 3,260 light-years.
In summary, trigonometric parallax is a reliable method for determining the distance to stars within 1,000 parsecs or 3,260 light-years. Beyond this range, other methods such as spectroscopic parallax and standard candles are used to estimate distances in astronomy.
for more questions on parallax
https://brainly.com/question/25940831
#SPJ11
We would like to test the hypotheses H0: μ = 130, HA: μ > 130. We found t = 2.73 with 5 degrees of freedom. What is the appropriate p-value.?
The appropriate p-value for the given test statistic and hypotheses is approximately 0.0253.
What is p-value?Tο determine the apprοpriate p-value fοr the given hypοthesis test, we need tο use the t-distributiοn and the t-statistic value οbtained.
Given:
Null hypοthesis (H0): μ = 130 (pοpulatiοn mean)
Alternative hypοthesis (HA): μ > 130 (pοpulatiοn mean)
T-statistic: t = 2.73
Degrees οf freedοm: df = 5
Tο calculate the p-value, we cοmpare the t-statistic tο the t-distributiοn.
Since the alternative hypοthesis is μ > 130, it is a οne-tailed test, and we are interested in the right tail οf the t-distributiοn.
Using a t-table οr a statistical sοftware, we can determine the p-value assοciated with the t-statistic and the degrees οf freedοm.
Fοr a t-statistic οf 2.73 with 5 degrees οf freedοm, the p-value is apprοximately 0.0257 (assuming a twο-tailed test).
Since we have a οne-tailed test, the apprοpriate p-value is half οf the twο-tailed p-value:
p-value = 0.0257 / 2 = 0.01285
Therefοre, the apprοpriate p-value fοr the given hypοthesis test is apprοximately 0.01285.
To learn more about p-value visit:
https://brainly.com/question/30461126
#SPJ4
Use a calculator to verify that ∑x=62,∑x 2
=1070,∑y=634,∑y 2
=90,230, and ∑xy=9,528. Compute r. As x increases from 3 to 25 months, does the value of r imply that y should tend to increase or decrease? Explain your answer. First, we construct a computation table so that we can calculate the values of x 2
,y 2
, and xy. Then we sum each column to compute each summation.
To compute the value of the correlation coefficient, we can use the given values of ∑x, ∑x^2, ∑y, ∑y^2, and ∑xy. The correlation coefficient, denoted as r, is calculated as:
r = (n∑xy - ∑x∑y) / √((n∑x² - (∑x)²)(n∑y² - (∑y)²))
Using the given values, we can substitute them into the formula to find the value of r.
Once we have the value of r, we can determine whether y should tend to increase or decrease as x increases from 3 to 25 months based on the sign of the correlation coefficient.
The computation table allows us to calculate the necessary summations for each column, including x², y², and xy.
By summing each column, we obtain ∑x² = 1070, ∑y² = 90,230, and
∑xy = 9,528.
These values can then be used to calculate the correlation coefficient, r, using the formula mentioned earlier.
After obtaining the value of r, we can determine the direction of the relationship between x and y.
If r is positive, it implies a positive correlation, indicating that as x increases, y tends to increase as well.
Conversely, if r is negative, it implies a negative correlation, meaning that as x increases, y tends to decrease.
The value of r will help us understand the relationship between the variables x and y in terms of their tendency to increase or decrease together.
To learn more about correlation coefficient visit:
brainly.com/question/30605619
#SPJ11
What is the domain of the square root function graphed below?
Answer:
D
Step-by-step explanation:
The graph clearly shows that x=>3
a 0.15-m-radius grinding wheel starts at rest and develops an angular speed of 12.0 rad/s in 4.0 s. what is the average tangential acceleration of a point on the wheel's edge?
The average tangential acceleration of a point on the wheel's edge is 0.45 m/s².
The radius of the grinding wheel r = 0.15 m Angular speed,ω = 12.0 rad/s Time taken, t = 4.0 s Formula used, Tangential acceleration = rα where r is the radius of the wheel α is the angular acceleration of the wheel. Multiplying both sides by r, we get, α = a/r Where a is the tangential acceleration. Using the formula Angular acceleration,α = ω/t= 12.0 rad/s4.0 s = 3.0 rad/s²Putting values in α = a/r, we get, a = α × r = 3.0 rad/s² × 0.15 m= 0.45 m/s². Therefore, the average tangential acceleration of a point on the wheel's edge is 0.45 m/s².
To learn more about tangential acceleration: https://brainly.com/question/11476496
#SPJ11
Solve for x.
(13x-32)
S
T
V
(7x + 22)°
U
Answer:
x=9
Step-by-step explanation:
13x-32 and 7x+22 are equal to each other (angles) so
13x-32=7x+22
13x-7x=22+32
6x=54
x=54/6
x=9