Answer:
2 for all
Step-by-step explanation:
all the sides of a rhombus are equal in length
Gabriela was given a 15% increase in wages. If she earned $36,000 last year, what can she expect to earn this year?
The increase in the amount of wages of Gabriela is $ 41,400
What is an Equation?
Equations are mathematical statements with two algebraic expressions flanking the equals (=) sign on either side.
It demonstrates the equality of the relationship between the expressions printed on the left and right sides.
Coefficients, variables, operators, constants, terms, expressions, and the equal to sign are some of the components of an equation. The "=" sign and terms on both sides must always be present when writing an equation.
Given data ,
Let the total amount after increase in wages be = A
Now , the initial amount of Gabriela be = $ 36,000
And , the percentage increase in the wages = 15 %
So , the equation will be
Total amount after increase in wages A = initial amount + ( percentage increase x initial amount )
Total amount after increase in wages A = 36,000 + ( 15/100 x 36,000 )
Total amount after increase in wages A = 36000 + ( 15 x 360 )
Total amount after increase in wages A = 36000 + 5400
Total amount after increase in wages A = $ 41,400
Therefore , the value of A is $ 41,400
Hence , The increase in the amount of wages of Gabriela is $ 41,400
To learn more about equations click :
https://brainly.com/question/10413253
#SPJ2
You complete two events of a triathlon. Your goal is to finish with an overall time of less than 100 minutes.
a. Select an inequality that represents how many minutes x
you can take to finish the running event and still meet your goal. Then solve the inequality.
18. 2+45. 4+x<100
18. 2
+
45. 4
+
x
<
100
18. 2+45. 4+x<100
18. 2
+
45. 4
+
x
<
100
x+18. 2+45. 4≤100
x
+
18. 2
+
45. 4
≤
100
x plus 18 point 2 plus 45 point 4 is less than or equal to 100
18. 2+x+45. 4>100
18. 2
+
x
+
45. 4
>
100
18 point 2 plus x plus 45 point 4 is greater than 100
45. 4+18. 2+x≥100
45. 4
+
18. 2
+
x
≥
100
45 point 4 plus 18 point 2 plus x is greater than or equal to 100
Question 2
The solution is.
Question 3
b. The running event is 3. 1 miles long. Suppose it takes you 8 minutes to run a mile. Would this time allow you to reach your goal? Explain your reasoning.
At 8 minutes per mile, it would take you minutes to run 3. 1 miles.
Question 4
You meet your goal because your total running time added to your swimming and biking times less than 100 minutes.
23 of 24 answered
check answer
Since 24.8 minutes is less than 36.4 minutes, you would still meet your goal because your total running time added to your swimming and biking times is less than 100 minutes.
The inequality that represents how many minutes x you can take to finish the running event and still meet your goal is: 18.2 + 45.4 + x < 100. To solve for x, we need to isolate it on one side of the inequality:
18.2 + 45.4 + x < 100
x < 100 - 18.2 - 45.4
x < 36.4
Therefore, you can take no more than 36.4 minutes to finish the running event and still meet your goal of finishing with an overall time of less than 100 minutes.
For question 3, if it takes 8 minutes to run a mile and the running event is 3.1 miles long, it would take you 24.8 minutes to complete the running event. This time is less than the maximum time of 36.4 minutes that you can take to still meet your goal, so yes, this time would allow you to reach your goal.
For question 4, the statement is just reiterating the goal mentioned in the first sentence, that your overall time for all three events must be less than 100 minutes. It confirms that you have met your goal by stating that your total running time added to your swimming and biking times is less than 100 minutes.
More on inequalities: https://brainly.com/question/28696129
#SPJ11
The monthly rent for an 800 square-foot office is $975 for an 1100 square-foot office the rent is $1125 right in Savona equation to find the monthly rent for 1500 square-foot office
Answer:
the answer is 1325
Step-by-step explanation:
Can somebody help me really quickly please
Answer: 77
Step-by-step explanation:
Bigger Rectangle = LW = 5x5 =25 There are 2 of those. =50
middl rectangle = LW = 5x3=15
triangles= 1/2 b h = 1/2 (3)(4) = 6 but therere are 2 so =12
Add up all shapes=50+15+12=77
Which of the following are true about the graph of f(x)=−4x2?
Select the TWO that apply.
the answer is A and D
when you differentiate the question you find that the maximum point is (0,0)i.e
\( \frac{dy}{dx} = - 8x\)
when dy/dx is 0 values of x are 0,0
and the function shows that valies of x are real numbers.
The domain of the graph is (−∞,∞), {x|x∈R} and the maximum point (0,0) which is the correct answer would be options (A) and (D)
What are the domain and range of the function?The domain of the function includes all possible x values of a function, and the range includes all possible y values of the function.
Given function as
f(x) = -4x²
The range is the set of values that correspond with the domain.
Range: (−∞,0], {y|y≤0}
Domain: (−∞,∞), {x|x∈R}
and the function shows that values of x are real numbers.
The maximum point is when differentiating the function, which is (0,0) i.e
dy/dx = -8x
Values of x are 0 when dy/dx is 0.
Hence, the domain of the graph is (−∞,∞), {x|x∈R} and the maximum point (0,0) which is the correct answer would be options (A) and (D)
Learn more about the domain and the range here:
brainly.com/question/21027387
#SPJ5
DECORATING Steve and Abby purchased a set of vases to place on a 12-foot long mantel above their fireplace. They want to place one vase 1/4 of the distance from one end of the mantel and the other vase 3/4 of the distance from the same end. What is the shortest distance from the end of the mantel should each vase be placed?
Answer:
Shortest distance of first mantel should be 3 ft from left end and shortest distance of second mantel should be 3 ft from right end
Step-by-step explanation:
Length of the mantel = 12 ft
Since first vase is 1/4 of the distance from one end of the mantel, then let's choose left end;.
Distance of first vase from left end = 1/4 × 12 = 3 ft
Also, distance of second vase from left end = 3/4 × 12 = 9 ft
This second vase is 9 ft from left end. Which means it is 3 ft from right end since the mantel is 12 ft in length.
Thus,shortest distance of first mantel should be 3 ft from left end and shortest distance of second mantel should be 3 ft from right end.
Given the second order homogeneous constant coefficient equation y′′+2y′−8y=0 1) the characteristic polynomial ar2+br+c is 2) The roots of auxiliary equation are (enter answers as a comma separated list). 3) A fundamental set of solutions is (enter answers as a comma separated list). 4) Given the initial conditions y(0)=−1 and y′(0)=−14 find the unique solution to the IVP y=
Therefore, the unique solution to the IVP\(y(t)=3*e^(-4t)-2*e^(2t).1)\). \(y′′+2y′−8y=0 is ar^2+br+c\). The characteristic polynomial for the given second-order homogeneous constant coefficient equation y′′+2y′−8y=0 is ar^2+br+c. In this case, the polynomial is r^2+2r-8.
the roots of the auxiliary equation, we set the characteristic polynomial equal to zero and solve for r. So, r^2+2r-8=0. Factoring or using the quadratic formula, we get (r+4)(r-2)=0. Therefore, the roots of the auxiliary equation are r=-4 and r=2.
a fundamental set of solutions, we use the roots of the auxiliary equation. For each root, we have a corresponding solution in the form of e^(rt). So, the fundamental set of solutions is y_1=e^(-4t) and y_2=e^(2t).
To know more about unique visit:
https://brainly.com/question/1594636
#SPJ11
1) The characteristic polynomial is r^2 + 2r - 8.
2) The roots of the auxiliary equation are -4 and 2.
3) A fundamental set of solutions is {e^(-4x), e^(2x)}.
4) The unique solution to the IVP y = 3*e^(-4x) - 4*e^(2x).
1) The characteristic polynomial for the given second order homogeneous constant coefficient equation y'' + 2y' - 8y = 0 is ar^2 + br + c. In this case, a = 1, b = 2, and c = -8.
2) To find the roots of the auxiliary equation, we substitute the values of a, b, and c into the quadratic formula. The formula gives us the roots as (-b ± √(b^2 - 4ac))/(2a). Substituting the values, we have (-2 ± √(2^2 - 4(1)(-8)))/(2(1)). Simplifying, we get (-2 ± √(4 + 32))/2, which becomes (-2 ± √36)/2. The roots are (-2 ± 6)/2, giving us the solutions -4 and 2.
3) A fundamental set of solutions is a pair of functions that can be used to express the general solution to the differential equation. In this case, the fundamental set of solutions is {e^(-4x), e^(2x)}. These exponential functions represent the two linearly independent solutions to the given differential equation.
4) To find the unique solution to the initial value problem (IVP) with y(0) = -1 and y'(0) = -14, we use the general solution and substitute the initial conditions into it. The general solution is y = C1*e^(-4x) + C2*e^(2x), where C1 and C2 are constants to be determined.
Substituting the initial conditions, we have -1 = C1*e^(0) + C2*e^(0) and -14 = -4C1*e^(0) + 2C2*e^(0). Simplifying, we get -1 = C1 + C2 and -14 = -4C1 + 2C2.
Solving these simultaneous equations, we find C1 = 3 and C2 = -4. Therefore, the unique solution to the IVP y = 3*e^(-4x) - 4*e^(2x).
Learn more about polynomial
https://brainly.com/question/11536910
#SPJ11
Need help and will mark brainlist and thank You
In a circle whose center is O, arc AB contaisn 100 degrees. Find the number of degrees in angle ABO?
Answer:
40
Step-by-step explanation:
Angles ABO, BAO, and AOB are the angles of isosceles triangle AOB. The angles at A and B are equal, so we have ...
AOB +2ABO = 180° . . . . . sum of angles in the triangle
100° +2ABO = 180° . . . . . . use the given value
50° +ABO = 90° . . . . . . . . divide by 2; next, subtract 50°
∠ABO = 40°
If an LTI system is modeled by a differential equation, can the transfer function of the D.E only be found if the input is a complex exponential, or can it be anything else?
Independent of the input, the transfer function. In cases when the input is not a complex exponential, you are probably interested in the result. The answer is that the output can be computed via convolution as long as the input satisfies certain constraints .
How does transfer function work?
A mathematical function called a transfer function of a system, sub-system, or component theoretically simulates the output of the system for each potential input.
Transfer functions are also known as system functions or network functions. They are frequently employed in electronic and control systems.
Why is the transfer function only specified for LTI systems?
The ratio between the Laplace transforms of the input and output signals under initial circumstances of zero can be used to define the transfer function of the LTI system.
Alternately, when the beginning circumstances are disregarded, the transfer function is described as the output to input ratio in the sdomain.
Learn more about The transfer function
brainly.com/question/13002430
#SPJ4
melinda owns a bakery she recently promised her best employee rainbow a raise.she said it would be reflected on rainbows next paycheck when rainbow was paid she instantly looked to see how much of a raise she received she used to make $10.40 per hour for this pay period though she earned $952 for working 80 hours
Answer: $11.90 per hour
Step-by-step explanation: I got this answer by dividing 952 dollars by 80 hours which resulted in $11.90 per hour.
Please help. Im stuck on this question and cant figure this out/
Answer:
34.1 and 34.3
Step-by-step explanation:
Since it is 2/9 and it's going up by 10's the decimal is .22222222. So it would be between numbers of .1 and .3. Hope this helps!
This is an R question
I have a dataset with 86 observations on the output, land and labor of a farm, 38 observations from 1989 and 48 observations from 1983. I also have two models

1. If I want to calculate how much larger is the output elasticity with respect to labor in 1989 vs 1983, can I split the data into a dataset of 1983 and a dataset of 1989, and calculate the elasticity respectively, then to compare them?
2. How can I compute a Wald statistic to test the null hypothesis that the intercept and the two elasticities are the same in 1983 as in 1989.
What data should I get and how can I get them?
1) If you want to calculate how much larger the output elasticity with respect to labor is in 1989 versus 1983, you can split the data into two datasets, one for each year, and estimate the output elasticity with respect to labor for each dataset.
2) You can compute a Wald statistic using the equation, W = (β1,1989 - β1,1983)^2 / [Var(β1,1989) + Var(β1,1983)]
1) Split the data into two separate datasets, one for 1983 and another for 1989, and calculate the output elasticity with respect to labor for each dataset. Then you can compare the two elasticities to determine how much larger the elasticity is in 1989 relative to 1983.
To calculate the output elasticity with respect to labor, you can use the following formula:
Output elasticity with respect to labor = (% change in output) / (% change in labor)
You can estimate the percentage changes in output and labor using the data from each year, and then use the formula above to calculate the output elasticity with respect to labor for each year.
2) To compute a Wald statistic to test the null hypothesis that the intercept and the two elasticities are the same in 1983 as in 1989, you can use the following steps:
Step 1: Estimate the two regression models separately for each year (i.e., 1983 and 1989) using the data from each year.
Step 2: Use the estimated coefficients from each regression model to construct the null hypothesis that the intercept and the two elasticities are the same in 1983 as in 1989.
Step 3: Estimate a new regression model that combines the data from both years and includes a dummy variable for year (i.e., 1983 = 0, 1989 = 1). The regression model should take the form:
Output = β0 + β1 Labor + β2 Land + β3 Year + ε
Step 4: Compute the Wald statistic for the null hypothesis using the following formula:
W = (β1,1989 - β1,1983)^2 / [Var(β1,1989) + Var(β1,1983)]
where β1,1989 and β1,1983 are the estimates of the output elasticity with respect to labor for 1989 and 1983, respectively, and Var(β1,1989) and Var(β1,1983) are the variances of these estimates.
Step 5: Compare the computed Wald statistic to a critical value from the chi-squared distribution with one degree of freedom. If the computed Wald statistic exceeds the critical value, reject the null hypothesis that the intercept and the two elasticities are the same in 1983 as in 1989.
Learn more about elasticity here
brainly.com/question/20594319
#SPJ4
HELP ME PLEASE!!!! BRAINLIEST FOR CORRECT ANSWER!!!
Amy will pend le than $32 on gift. So far, he ha pent $17. What are the poible additional amount he will pend?
The possible additional amount he will spend more than 15.
An inequality is a relationship that denotes a non-equal comparison between two numbers or mathematical expressions.
According to the question,
Let Amy, will spend $c additional amount.
Amy will spend more than $32 on gifts.
He spent $17.
We solved this question by using inequality.
The inequality equation is:
c + 1 7 > 32
c > 32 -17 ( by changing the sign)
C > 15
So, the possible additional amount he will spend more than 15.
Read more about inequality :
https://brainly.com/question/24372553
#SPJ4
What is 30% of 30? I don’t know the exact answer so whoever answers first, with the answer you truly think it is, gets brainliest!! Good luck!
Answer:
9
Step-by-step explanation:
Thirty divided by one hundred multiplied by thirty percent is equals to nine.
The value of 30% of 30 is 9
How to calculate the percentage of valuesGiven the expression
30% of 30
30% can also be written as 30/100 = 0.03
Substitute into the expression
30% of 30
= 0.3 * 30
= 9
Hence the value of 30% of 30 is 9
Larn more on percentages here: https://brainly.com/question/24304697
How is the image that results from a 90° counterclockwise rotation similar to the image that results from a 270° clockwise rotation? How is it different?
Answer: 90 degrees counterclockwise and 270 degrees clockwise are the same things and you need to use the same formula for both
Step-by-step explanation:We swap the value of x and y and negate the value of y. So the value of x becomes the value of y and value of y becomes the value of x. so the formula is:
(x, y) –> (-y, x)
Before Rotation After Rotation
(x, y) (-y, x)
hope this helps
-5 - y = -3x find the slope and y-intercept
Answer:
slope = 3 , y- intercept = - 5
Step-by-step explanation:
the equation of a line in slope- intercept form is
y = mx + c ( m is the slope and c the y- intercept )
given
- 5 - y = - 3x ( add 5 to both sides )
- y = - 3x + 5 ( multiply through by - 1 )
y = 3x - 5 ← in slope- intercept form
with slope m = 3 and y- intercept c = - 5
Which street is perpendicular to 2nd Ave?
Answer:
what are the other streets??
Step-by-step explanation:
Converting units in probability and statistics
N 1
Remember that
the speed is equal to divide the distance by the time
s=d/t
in this problem
we have
d=100 yd
t=5.1 sec
therefore
Convert the units
1 mile=1,760 yards
1 hour=3,600 seconds
so
d=100 yd=100/1,760 miles
t=5.1 sec=5.1/3,600 hours
Find out the speed
speed=(100/1,760)/(5.1/3,600)
speed=40 miles/hourN 2
speed=175 miles/hour
speed=d/t
d=speed*t
For t=12 sec -----> convert to hours
1 hour=3,600 sec
12 sec=12/3,600 hours
d=175(12/3,600)
d=0.5833 miles
Convert miles to feet
1 mile=5,280 ft
0.5833 miles=0.5833*5,280=3,080 ft
Convert 12 sec to hours
1 hour=3,600 sec
so
\(12\text{ sec=12 sec}\cdot\frac{1}{3,600}\frac{hours}{\sec}=12\sec \cdot\frac{1\text{ hours}}{3,600\text{ sec}}=\frac{12}{3,600}\text{hours}\)2. What is the average salary offered to a Stony Brook college graduate? To study this question you and a friend interview N students that graduated last year, and ask them what they earn. Student i's response was recorded as Yi. You are interested in the average, My. You assumed that the sample of Y's is iid. First you calculate the following estimate of uy: W1 N 1 N i=1 ΣΥ. . You and your friend each collected half the data. Thus you collected Y1, ..., YN/2 and your friend collected Yn/2+1, ... , Yn. Unfortunately, it turns out that your friend collected the data at a wild alumnae party, and you suspect that these data may not be as precise as your data. So whereas the variance of your data is, var(Y;) = 0%, i = 1, ...,N/2. then your friends data have the variance, var(Y) = oʻ(1 + 3c), i=N/2+1, ...,N, for some constant c> 0. (d) Your friend is sorry that half the data are not as precise as they could have been, and suggest that you discard the noise data, and simply use hr Na Ex? Y; as your estimator for my. Which estimator is most efficient (has the smallest variance) în or îz? Does your answer depend on c? = N.Σ. (Υ – μ.) - = (e) Suppose now that c = 0 such that var(Y;) = o2 for i = 1, ...,N. You have N = 300 observation and calculate s2 = 20,000,000 and î1 = $48,000. Before collecting the data, your friend argues mean salary, my, is s $50,000, using a 1% significance level. Write down the confidence interval at 1% significance level and decide whether you will accept your friend's
The more precise estimator ẏ₁ is the most efficient in estimating the average salary. With given values, the confidence interval is calculated to determine whether to accept the claim of a $50,000 mean salary.
In this scenario, we have two estimators for the average salary: ẏ₁, which uses precise data, and ẏ₂, which includes less precise data. The efficiency of the estimators depends on the variance of the data. If we compare the variances, Var(ẏ₁) = 0% and Var(ẏ₂) = o²(1 + 3c). Since Var(ẏ₁) is zero, it implies that ẏ₁ is the most efficient estimator. The answer does not depend on the value of c.
In the second part, with c = 0, we have Var(Y) = o². Given N = 300, s² = 20,000,000, and ẏ₁ = $48,000, we can use these values to construct a confidence interval. Using a 1% significance level, the critical value is 2.57 (from the standard normal distribution). The confidence interval is given by ẏ₁ ± 2.57 * sqrt(s²/N), which results in $48,000 ± 2.57 * sqrt(20,000,000/300). If this interval contains $50,000, we would accept your friend's claim; otherwise, we would reject it.
To learn more about average click here
brainly.com/question/29550341
#SPJ11
In ΔSTU, u = 220 cm, ∠T=145° and ∠U=18°. Find the length of s, to the nearest 10th of a centimeter.
Answer:
208.1
Step-by-step explanation:
4 divided by 2/3
pls pls pls pls pls help pls pls
Answer:
4 divided by 2/3 (4 ÷ 2/3) = 6
Step-by-step explanation:
When you divide one number by another , this is the same as multiplying that one number by the reciprocal of that other number. So a/b = a × 1/b = a × b^-1.
Also a reciprocal is the same as taking something to the power of -1.
When you take the reciprocal of a fraction, just flip the numerator, and denominator.
b^-1 = 1/b.
b^-n = 1/b^n.
(a/b)^-1 = b/a
a/b^-1 = ab
Therefore 4 / (2/3) = 4 × 3/2 = 12/2 = 6.
Answer:
6
Step-by-step explanation: 4 ÷ (2 ÷3)=6
Eighth grade
T.3 Area and perimeter: word problems MY
you have prizes to reveals Got
Nancy has a pool in her backyard, and she wants to build a fence around the entire area,
Nancy's backyard is 10 meters wide and 15 meters long. It costs $10.00 per meter to install
a wooden fence. How much would it cost to put a wooden fence around Nancy's backyard?
Submit
Since Nancy wants a fence around her backyard, we are obviously talking about perimeter here.
10 + 10 + 15 + 15 = 50
The perimeter of her backyard is 50 meters
50 x 10 = 500
It would cost her $500
Help please. 20 pts WILL MARK BRAINLIEST
Answer:
Subtract 6 from both sides
A number decreased by 10 is the same as 8 minus 2 times the number.
The number is x. And the value of x after calculating the equation is -2.
Let x be the number
A number decreased by 10 is the same as 8 minus 2 times the number.
(Twice a number) (decreased by) (8) (is equal to) (the number) (decreased by) (10)
2x - 8 = x - 10.
So, we have:
2x - 8 = x - 10
subtracting x from both sides
2x - 8 - x = x - 10 - x
x - 8 = -10
adding 8 on both sides we get
x - 8 + 8 = -10 + 8
x = -10 + 8
x = -2
the number x, = -2
The number is x. And the value of x after calculating the equation is -2.
To know more about calculation
https://brainly.com/question/24104492
#SPJ1
Soft drinks sell for P8.50 and fruit juice sells for P11.00 each. On a certain day, the number of soft drinks sold was four times the number of fruit juice sold. How many soft drinks were sold if the total income was P900.00?
The number of soft drinks sold was 4 times the number of fruit juice -> On average, every 4 soft drinks sold, 1 fruit juice is.
-> Every P34.00 of soft drinks sold, P11.00 of fruit juice is.
So, the income is P45.00 everytime.
Since the total income is P900.00, the amount of 4 soft drinks and 1 fruit juice sold is 900 : 45 = 20 times
So, there were 20 x 4 = 80 soft drinks sold.
Recheck : 80 x 8.5 + 20 x 11 = 680 + 220 = 900.
an = - 10+5n : find the 21st term in the sequence
Answer:
Step-by-step explanation:
a₂₁ = -10 + 5(21) = 95
Let p be the population proportion for the following condition. Find the point estimates for p and q. In a survey of 1562 adults from country A, 316 said that they were not confident that the food they eat in country A is safe. The point estimate for p, p^ is ? The point estimate for q, q^ is ?
For a sample of adults from country A, related to their unconfident that the food they eat in country A is safe, the point estimate of population proportions p and q are equals 0.202 and 0.798 respectively.
One sample proportion test is conducted to check whether the population proportion (P) shows a significant difference from the hypothesized value (p)or not. Sample proportion
\((\hat p)\) can be defined as the ratio of number of successes in the sample and the size of the sample. We have a sample survey of 1562 adults from country A, in which, 316 were not confident that the food they eat in country A is safe.
So, Sample size (n)= 1562
The number of successes (x) = 316
Let's consider X be the number of adults that were not confident with the food that they eat in country A is safe. The point estimate of the population proportion (p) is written as below,
\(\hat p=\frac{x}{n}\) \( = \frac{316}{1562}\)
= 0.2023047
≈ 0.202
Therefore, the point estimate of the population proportion is 0.202. The point estimate for q is \(\hat q = 1 - \hat p\) = 1 -0.202
= 0.797695 ≈ 0.798
Therefore, the point estimate for q is 0.798.
For more information about population proportion, visit :
https://brainly.com/question/4300488
#SPJ4
For a sample of adults from country A, related to their unconfident that the food they eat in country A is safe, the point estimate of population proportions p and q are equals 0.202 and 0.798 respectively.
One sample proportion test is conducted to check whether the population proportion (P) shows a significant difference from the hypothesized value (p)or not. Sample proportion
can be defined as the ratio of number of successes in the sample and the size of the sample. We have a sample survey of 1562 adults from country A, in which, 316 were not confident that the food they eat in country A is safe.
So, Sample size (n)= 1562
The number of successes (x) = 316
Let's consider X be the number of adults that were not confident with the food that they eat in country A is safe. The point estimate of the population proportion (p) is written as below,
= 0.2023047
≈ 0.202
Therefore, the point estimate of the population proportion is 0.202. The point estimate for q is = 1 -0.202
= 0.797695 ≈ 0.798
Therefore, the point estimate for q is 0.798.
To know more about denoted by p
https://brainly.com/question/30347628
#SPJ4
Lilly opens an account with $60. Each week she deposits $12. Write an expression to show the amount she has after w weeks.
Answer:
5 weeks
Step-by-step explanation:
so if Lily has $60 and takes out (subtracts) 12 a week then it would look like this
TOTAL STARTED WITH EACH WEEK
$60 -12 48
$48 - -12 36
$36 -12 24
$24 -12 12
$12 -12 0
SO Lily will have enough money to deposit for 5 weeks
Let v1 span R3? Why or why not? and v3 . Does (1.V2.3) -4 -5 = -3 -9 6 Choose the correct answer below. A. Yes. Any vector in R3 except the zero vector can be written as a linear combination of these three vectors. B. No. The set of given vectors spans a plane in R3. Any of the three vectors can be written as a linear combination of the other two. O C. No. When the given vectors are written as the columns of a matrix A, A has a pivot position in only two rows. O D. Yes. When the given vectors are written as the columns of a matrix A, A has a pivot position in every ro row.
In this case, when the given vectors are written as the columns of a matrix A, A has a pivot position in only two rows. This means that the vectors are linearly dependent and do not span R3. Therefore, correct answer is C. No. When the given vectors are written as the columns of a matrix A, A has a pivot position in only two rows.
To determine if a set of vectors spans a given space, we need to check if they are linearly independent. If they are linearly independent, then they span the space. If they are linearly dependent, then they do not span the space.
One way to check for linear independence is to write the vectors as the columns of a matrix and reduce it to row echelon form. If there is a pivot position (a leading 1) in every row, then the vectors are linearly independent and span the space. If there is not a pivot position in every row, then the vectors are linearly dependent and do not span the space.
Therefore, the correct answer is C. No. When the given vectors are written as the columns of a matrix A, A has a pivot position in only two rows.
know more about matrix here
https://brainly.com/question/28180105#
#SPJ11