Answer:
\(f(-2)=58\)
Step-by-step explanation:
\(f(x)=-12x+34\)
\(f(-2)=-12(-2)+34\)
\(f(-2)=24+34\)
\(f(-2)=58\)
Cadence baked 45 cupcakes on Tuesday.This was 3 more than twice the number of cupcakes she baked on Monday. How many cupcakes did Cadence bake on Monday
It should be noted that the number of cupcakes that Cadence bake on Monday is 21 cupcakes.
How to calculate the number of cupcakes?It should be noted that Cadence baked 45 cupcakes on Tuesday and this was 3 more than twice the number of cupcakes she baked on Monday
2Let the number of cakes on Monday = x
Therefore, the expression will be:
(2 × x) + 3 = 45
2x + 3 = 45
Collect like terms
2x = 45 - 3.
2x = 42
Divide
x = 42 / 2
x = 21
Therefore, it should be noted that the number of cupcakes that Cadence bake on Monday is 21 cupcakes.
Learn more about expressions on:
brainly.com/question/25968875
#SPJ1
when its comes to interest,most CDs will allow which of the following options?
a. Unlimited withdraws of interest
b. Periodic interest payout
c. loans against principal
d. Withdrawal of principal
When it comes to interest, most Certificates of Deposit (CDs) will allow periodic interest payouts. So, correct option is B.
A CD is a type of savings account that allows you to earn a fixed interest rate on your deposit for a specific period of time, called the term. Typically, the longer the term of the CD, the higher the interest rate offered.
However, during the term of the CD, the funds are locked in, meaning that you cannot withdraw the principal without incurring a penalty.
While some CDs may allow for unlimited withdrawals of interest, this is not common, and may still come with restrictions or penalties. Loans against principal are also not typically allowed with CDs, as the funds are meant to be held for a set term.
Therefore, the most common option available for CD holders is to receive periodic interest payouts, which can be monthly, quarterly, or annually, depending on the terms of the CD. This allows the CD holder to earn interest on their deposit while still receiving some income during the term of the CD.
So, correct option is B.
To learn more about interest click on,
https://brainly.com/question/12456231
#SPJ1
a machinist is making a gear that will pull a chain at 60 ft/min when rotating at 40 rev/min. What should the radius of the gear be? Answer in inches.
The radius of the gear should be approximately 2.8644 inches.It is important to note that when making calculations involving units, we need to make sure that all units are consistent and convert them when necessary. In this case, we converted the answer from feet to inches to match the given unit.
To find the radius of the gear that will pull a chain at 60 ft/min when rotating at 40 rev/min, we can use the formula:
chain speed = 2 x pi x radius x rotational speed
where pi is a mathematical constant approximately equal to 3.14.
We know that the chain speed is 60 ft/min and the rotational speed is 40 rev/min, so we can substitute those values into the formula:
60 = 2 x 3.14 x radius x 40
Simplifying the equation, we get:
radius = 60 / (2 x 3.14 x 40)
radius = 0.2387 ft
To convert feet to inches, we can multiply the answer by 12:
radius = 0.2387 x 12 = 2.8644 inches.
For such more questions on Radius:
https://brainly.com/question/24375372
#SPJ11
solve the triangle for which angle a =30\degree, angle b=45\degree, and a=20
The triangle for which angle a =30\degree, angle b=45\degree, and a=20, side a ≈ 20, side b ≈ 28.284, and side c ≈ 38.636
Two angles (a and b) and one side (a) are provided for us to solve the triangle. Let's call the side across from angle a side A, the side across from angle b side B, and the side across from the final angle (angle c) side C.
Here, it is given that,
angle a = 30 degrees
angle b = 45 degrees
side a = 20
angle c = 180 - (angle a + angle b)
angle c = 180 - (30 + 45)
angle c = 180 - 75
angle c = 105 degrees
We know that, a/sin(A) = b/sin(B) = c/sin(C)
a/sin(A) = b/sin(B) = c/sin(C)
20/sin(30) = b/sin(45) = c/sin(105)
b/sin(45) = 20/sin(30)
b = (sin(45) * 20) / sin(30)
b ≈ (0.7071 * 20) / 0.5
b ≈ 14.142 / 0.5
b ≈ 28.284
Now,
c/sin(105) = 20/sin(30)
c = (sin(105) * 20) / sin(30)
c ≈ (0.9659 * 20) / 0.5
c ≈ 19.318 / 0.5
c ≈ 38.636
Thus, side a ≈ 20, side b ≈ 28.284, and side c ≈ 38.636.
For more details regarding triangle, visit:
https://brainly.com/question/2773823
#SPJ1
Take a look at the figure. What are the coordinates of the point labeled A in the graph shown?
A. (2,-2). B. (-2,4)
C. (2, 2)
D.(-2, 2)
Answer:
(2,-2)
Step-by-step explanation:
Point A is 2 units to the right of the origin so the x coordinate is 2
It is also 2 units down so the y coordinate is -2
The point is (x,y) so A = (2,-2)
Answer:
A.(2,-2)
Step-by-step explanation:
What kind of graph is this
three notebook and five pencils cost N$ 30. one notebook and ten pencils also cost N$30. taking the cost of a note to be n dollars and the cost of a pencil to be p dollars, write two simultaneous equations and find the price of one notebook and one pencil.
Thus, the one notebook' price n = $6 and the price of one pencil is p = $2.4.
Explain about the 2 variable linear equation:Ax+By=C is the usual form for two-variable linear equations. A standard form linear equation is, for instance, 2x+3y=5. Once an equation is given in this format, finding both intercepts is rather simple (x and y). When attempting to solve systems involving two linear equations, this form is also quite helpful.
Let cost of a notebook to be 'n' dollars
Let the cost of a pencil to be 'p' dollars,
Then, the system of equations are-
3n + 5p = 30 ..eq 1
n + 10p = 30 ....eq2
multiply eq 2 with 3
3n + 30p = 90 ...eq 3
Subtract eq 3 from eq 1
3n + 5p - 3n - 30p = 30 - 90
25p = 60
p = 2.4
n + 10(2.4) = 30
n = 30 - 24
n = 6
Thus, the price of one notebook n = $6 and the price of one pencil is p = $2.4.
know more about the 2 variable linear equation:
https://brainly.com/question/13951177
#SPJ1
What is the result of isolating y^2 in the equation below? 4x^2 + 25y^2= 100
Answer:
In factored form: \(y=\sqrt{-\frac{1}{25}(2x-10)(2x+10)}\)
In standard form: \(y=\sqrt{-\frac{4}{25}x^2+4}\)
Step-by-step explanation:
Generally for these type of equations we want to get the term with "y" by it self (ignoring coefficients and any operations such as square root, etc...) so we want to get rid of the \(4x^2\) from the left side which we can do by subtracting this from both sides to maintain equality and get rid of it on the left side.
\(25y^2=-4x^2+100\)
One thing I want to note here is we can actually factor the right side which we generally want to do, we can rewrite it as: \(-(4x^2-100)\) and from here we have a difference of squares: \(a^2-b^2=(a-b)(a+b)\) so we can rewrite this as: \(-(2x-10)(2x+10)\)
\(25y^2=-(2x-10)(2x+10)\)
From here we divide both sides by 25:
\(y^2=-\frac{1}{25}(2x-10)(2x+10)\)
Now from here to get rid of that square we do the inverse which is taking the square root:
\(y=\sqrt{-\frac{1}{25}(2x-10)(2x+10)}\)
The reason factoring is useful in this case is we can now easily determine the domain of the function since inside the square root we have a quadratic which is opening down meaning it's only not negative between the zeroes (including the zeroes since they're... zero not negative) and this would be the domain of the graph. But if we wanted it to not be in factored form we would just put back what we had so we would have:
\(y=\sqrt{-\frac{1}{25}(4x^2-100)}\)
then distribute the -1/25 to get:
\(y=\sqrt{-\frac{4}{25}x^2+4}\)
PLS Help PLSSS pllssssss
Answer:
$4.42
Step-by-step explanation:
hope that helps :))
a bus travles with a constant speed of 48 miles per hour how long will it take to travel 60 miles?
Answer:
1 hour and 15 min
Step-by-step explanation:
I think this is right but look it up just to be sure
Step-by-step explanation:48miles in 60 min. 1/4 of 60 is 1so 60 +15 = 1hr 15 min.
Type the correct answer in the box. Use numerals instead of words. If necessary, use / for the fraction bar. is parallel to , and is perpendicular to . The number of 90° angles formed by the intersections of and the two parallel lines and is .
Answer:
The question is not complete, below is a complete question with the accompanying diagram:
Instructions: Type the correct answer in the box. Use numerals instead of words. If necessary, use / for the fraction bar.
AB is parallel to CD, and EF is perpendicular to AB
The number of 90° angles formed by the intersections of Ef and the two parallel lines AB and CD is ____
Answer:
The number of 90° angle formed = 8 angles
Step-by-step explanation:
From the question and attached diagram, the following information is given:
AB is parallel to CD
EF is perpendicular to AB
Required: number of 90° angles formed by the intersection of the perpendicular line and the parallel lines.
Note, the angle formed between a line and a perpendicular line = 90°
From the diagram:
Number of 90° angle formed by intersection of perpendicular line EF and line AB = ∠1, ∠2, ∠3 and ∠4 = 4 angles
Number of 90° angle formed by intersection of perpendicular line EF and line CD = ∠5, ∠6, ∠7 and ∠8 = 4 angles
Total 90° angles formed by perpendicular line with lines = ∠1, ∠2, ∠3, ∠4, ∠5, ∠6, ∠7, and ∠8 = 8 angles
25 - 7 = 3u
solve for u
Answer:
u=6
Step-by-step explanation:
18=3u
6=u
Answer:
U=6
Step-by-step explanation:
Help asappp I will PayPal you hahahahha
Answer:
The answer would be C
Step-by-step explanation:
q equals cube root of 64
because if you want to get rid of cube. you take cube root on both side
(q^3)^1/3= (64)^(1/3)
q=64^(1/3)
Sheri saves nickels and dimes in a coin purse for her daughter. The total value of the coins in the purse is $0.70. The number of nickels is two less than six times the number of dimes.
How many nickels and how many dimes are in the coin purse?
Answer:
Step-by-step explanation:
Let's start by assigning variables to represent the unknowns in the problem. We can use "n" to represent the number of nickels and "d" to represent the number of dimes.
From the problem statement, we know that the total value of the coins in the purse is $0.70. We can write an equation to represent this information:
0.05n + 0.10d = 0.70
We also know that the number of nickels is two less than six times the number of dimes. We can write an equation to represent this information:
n = 6d - 2
Now we can substitute the expression for "n" into the first equation:
0.05(6d - 2) + 0.10d = 0.70
Simplifying the left side of the equation, we get:
0.30d - 0.10 + 0.10d = 0.70
Combining like terms, we get:
0.40d = 0.80
Dividing both sides by 0.40, we get:
d = 2
So there are 2 dimes in the coin purse. Now we can use the second equation to find the number of nickels:
n = 6d - 2 = 6(2) - 2 = 10
So there are 10 nickels in the coin purse.
Therefore, Sheri has 10 nickels and 2 dimes in the coin purse for her daughter.
2. Kasie lives in Seattle. She can see her house from the observation deck of the Seattle Space Needle. The
observation deck is 520 feet above the ground and the angle of depression from the deck to her house
is 70. What is the direct distance from the base of the Space Needle to Kasie's house? Round your
answer to the nearest foot.
Direct distance from the base of the Space Needle to Kasie's house = 1429 feet.
What is angle of depression?The angle of depression is the angle between the horizontal line and the observation of the object from the horizontal line. It is basically used to get the distance of the two objects where the angles and an object's distance from the ground are known to us.
Given,
Height of the observation deck AB = 520 feet
Angle of depression = 70°
Distance of the Space needle base to house BC = ?
By the figure,
tan70° = AB/BC
BC = tan70°(AB)
BC = 2.7475(520)
BC = 1428.7 feet
Distance of the Space needle base to house to nearest foot = 1429 feet
Hence, 1429 feet is the distance between base of the Space Needle to Kasie's house.
Learn more about angle of depression here:
https://brainly.com/question/13514202
#SPJ1
Help pls hurryyyy!!?!!
Answer:
The second option is correct
Step-by-step explanation:
a number times a negative is positive, but then if you multiply the positive by another negative, the answer is negative
Sports teams prefer to play in front of their own fans rather than at the opposing team’s site. Having a sell-out crowd should provide even more excitement and lead to an even better performance, right? Well, consider the Oklahoma City Thunder, a National Basketball Association team, in its second season (2008–2009) after moving from Seattle. This team had a win-loss record that was actually worse for home games with a sell-out crowd (3 wins and 15 losses) than for home games without a sell-out crowd (12 wins and 11 losses).
Answer:
Both variables appear to have something in common.
Explanatory: crowd/sale
Response: win/loss
There are two possible effects of crowd size to this game one might be due to pressure and nervousness from crowd size or
Another factor( variable) which is related to crowd size and the outcome of the match.
Step-by-step explanation:
Given data:
Home games with sell out crowd
Win = 3
Loss = 15
Total = 18
Home games without sell out crowd
Win = 12
Loss = 11
Total = 23
Therefore:
Percentage of win with sellout crowd
= 3/18 * 100
= 0.166 * 100
= 16.7%
Percentage of win with smaller crowd
= 12/23 * 100
= 0.522 * 100
= 52.2%
Both variables appear to have something in common.
Explanatory: crowd/sale
Response: win/loss
There are two possible effects of crowd size to this game one might be due to pressure and nervousness from crowd size or
Another factor( variable) which is related to crowd size and the outcome of the match.
The function
f(x) = 5sqrt(x + 13) + 5 has an inverse f ^ - 1 * (x) defined on the domain x < 5 Find the inverse. x >= - 13
The inverse function: \(f^{-1} (x) =\) \((\frac{x -5}{5} )^{2} -13\)
The inverse is defined on the domain x < 5 and x ≥ -13 for the original function, which means that the range of the original function is y ≥ 5.
What is a function?A function is a relationship that exists between two sets of numbers, with each input from the first set, known as the domain, corresponding to only one output from the second set, known as the range.
Given function is; \(f(x) = 5\sqrt{(x + 13)} + 5\)
To find the inverse of the given function, we first replace f(x) with y:
⇒ \(y = 5\sqrt{(x + 13)} + 5\)
Subtract 5 from both sides:
⇒ \(y -5 = 5\sqrt{(x + 13)}\)
⇒ \(\frac{(y -5)}{5} = \sqrt{(x + 13)}\)
⇒ \((\frac{y -5}{5} )^{2} = x + 13\)
⇒ \((\frac{y -5}{5} )^{2} -13 = x\)
Now we have x in terms of y, so we can replace x with f⁻¹(x) and y with x to get the inverse function:
f⁻¹(x) = \((\frac{x -5}{5} )^{2} -13\)
The domain of the inverse function is x ≥ 5, because this is the range of the original function, and we were given that the inverse is defined on the domain x < 5. However, we must also exclude the value x = 5, because the denominator of the fraction \((\frac{x -5}{5} )^{2}\) becomes zero at this value. Therefore, the domain of f⁻¹(x) is x > 5.
We were given that x ≥ -13 for the original function, which means that the range of the original function is y ≥ 5. Therefore, the domain of the inverse function becomes the range of the original function, and the range of the inverse function becomes the domain of the original function.
To know more about domain, visit:
https://brainly.com/question/26098895
#SPJ1
What are the roots of f(x) = x^3+6x^2+11x+6.
Given the function:
\(f(x)=x^3+6x^2+11x+6\)The roots of the function are the value of x which make the function f(x) = 0
We can find the roots by drawing the function
The intersection between the function and the x-axis will give the roots of the function
The graph of the function is as shown in the following picture:
As shown, the points of intersection with the x-axis are:
( -3, 0 ) and ( -2, 0) and ( -1, 0 )
so, the roots of the function are:
x = { -3, -2, -1 }
A fair coin is spun four times. Circle the probability of getting four Heads.
A 1/2 B 2 C 1/8 D 1/6
Answer:the answer is 1/16
so none of the above
Step-by-step explanation:
Political parties rely heavily upon polling to measure their support in the electorate. In a country with four major political parties, a poll is conducted and the Coffee Party is supported by 435 of the 1183 randomly-selected voters who were polled.
A) The Coffee Party leader claim that they have the support of 42% of the electorate. Construct and interpret a 98% confidence interval to estimate the proportion of voters who support the Coffee Party in the country and indicate whether or not your interval suggests that this claim is plausible? Explain.
B) Suppose the random smple was actually 1200 people, but 17 people never responded. What type of bias is the and how could this potentially change your conclusion to part (a)? Explain.
Answer:
a) The claim is not plausible
b) claim is plausible and the type of bias here is response bias
Step-by-step explanation:
Given data:
Number of political parties = 4
coffee party got the support of 435 out of 1183 randomly selected voters in a poll conducted.
A) Construct and interpret a 98% confidence interval to estimate the proportion of voters who support the coffee party
H0 ( null hypothesis ) : p = 0.42
Ha ( alternate hypothesis ) : p ≠ 0.42
z value for 98% confidence interval = 2.326
using 98% confidence interval the value of p = ( 0.3668, 0.3686 )
hence the claim is not plausible
B) Determine the type of bias
Assume the actual number of people = 1200
and 17 people did not respond
hence number of people who responded = 1200 - 17 = 1183
Therefore the claim by the manager is plausible because 17 people did not respond and the type of bias here is response bias
attached below is a detailed solution of the problem of the A part
write polynomial function in standard form with given zeros, x=-2,0,1
The equation for the polynomial in the standard form is:
P(x) = x^3 + x^2 - 2x
How to find the equation of the polynomial?A polynomial of degree N with the n zeros {x₁, x₂, x₃, ..., xₙ} is written as:
P(x) = (x - x₁)*(x - x₂)*...*(x - xₙ)
That is called the factorized form of the polynomial, and we are assuming that the leading coefficient is equal to 1 just for simplicity.
In this case we have 3 zeros {-2, 0, 1}, so the polynomial is of degree 3, and we can write it as:
P(x) = (x + 2)*(x - 0)*(x - 1)
To write the polynomial in the standard form, we need to expand the product:
P(x) = (x + 2)*(x)*(x - 1)
P(x) = (x^2 + 2x)*(x - 1)
P(x) = (x^3 + 2x^2 - x^2 - 2x)
P(x) = x^3 + x^2 - 2x
That is the polynomial.
Learn more about polynomials:
https://brainly.com/question/4142886
#SPJ1
In a right triangle, the acute angles have the relationship sin(2x+4)=cos(46)
Answer:
The ratio equivalent to the sin of ∠A will be:
sin ∠A = BC / AB
Hence, option 3) is correct.
Step-by-step explanation:
We know that some of the trigonometric ratios such as
sin Ф = Opposite / Hypotenusecos Ф = Adjacent / Hypotenusetan Ф = Opposite / AdjacentIn our case
Ф = ∠A
As we have to determine the ratio equivalent to the sin of ∠A
so
sin Ф = Opposite / Hypotenuse
Here:
Ф = ∠A
Opposite of ∠A = BC
Hypotenuse = AB
Thus,
substituting Ф = ∠A, Opposite = BC, Hypotenuse = AB
sin Ф = Opposite / Hypotenuse
sin ∠A = BC / AB
Therefore, the ratio equivalent to the sin of ∠A will be:
sin ∠A = BC / AB
Hence, option 3) is correct.
A number is selected at
random from each of the sets
£2,3,4} and {1, 3, 5}. Find the
Probability that the sum of the two numbers is greater than 3 but less than 7?
Answer:
0.4444 = 44.44% probability that the sum of the two numbers is greater than 3 but less than 7.
Step-by-step explanation:
A probability is the number of desired outcomes divided by the number of total outcomes.
A number is selected at random from each of the sets {2,3,4} and {1, 3, 5}.
The possible values for the sum are:
2 + 1 = 3
2 + 3 = 5
2 + 5 = 7
3 + 1 = 4
3 + 3 = 6
3 + 5 = 8
4 + 1 = 5
4 + 3 = 7
4 + 5 = 9
Find the probability that the sum of the two numbers is greater than 3 but less than 7?
4 of the 9 sums are greater than 3 but less than 7. So
\(p = \frac{4}{9} = 0.4444\)
0.4444 = 44.44% probability that the sum of the two numbers is greater than 3 but less than 7.
Question 12 only, I inserted a picture of it, & please provide an explanation. Graph the solution to the inequality.
Solution
For this case we can do the following:
\(x^2<16\)We can do this:
\(-4Gina randomly chooses from three different games to play on her computer: game A, game B, and game C. She generated this table of random combinations to model the situation. The estimated probability that Gina plays at least three games before she plays game a is
Answer:
The answer is 0.34
Step-by-step explanation:
I'm sorry i don't have an explanation for this. please like this comment is my answer is right
Explanation:
You must find the probability of Gina playing at least three games before playing game A. The phrase “at least three” means “three, four, five, or more.” That means Gina would not play game A in the first two occurrences (n – 1 = 3 – 1 = 2). Search the table for all outcomes that do not have A in the first two occurrences. These occurrences represent the event you’re interested in. Estimate the probability using the formula
.
The answer is 0.34.
fins the square number that square number that is greater than 20 but smaller than 50
Answer:
a)
\begin{gathered} {5}^{2} = 25 \\ {6}^{2} = 36 \\ {7}^{2} = 49\end{gathered}
5
2
=25
6
2
=36
7
2
=49
Therefore:
25, 36 and 49
Graph and solve y=1/2x-6 and y=1/2x+2
Answer:
No solution.
Step-by-step explanation:
To solve this problem, all you have to do is graph the lines and see where they intersect.
This is what you would do to solve a normal problem. However, these lines are parallel this means that the solution to these lines is no soultion
What is the value of x? Round only your final answer to the nearest hundredth.
The length of the hypotenuse is 12.52 yards.
Given that a right triangle, we need to find the value of the hypotenuse x,
Trigonometric ratios can be calculated by taking the ratio of any two sides of the right-angled triangle.
We can evaluate the third side using the Pythagoras theorem, given the measure of the other two sides. We can use the abbreviated form of trigonometric ratios to compare the length of any two sides with the angle in the base.
Let us consider a right-angled triangle with one of its acute angles to be x. Then the cosine formula is, cos x = (adjacent side) / (hypotenuse), where "adjacent side" is the side adjacent to the angle x, and "hypotenuse" is the longest side (the side opposite to the right angle) of the triangle.
We know that, the cosine of the angle is the ratio of the base to the hypotenuse,
So,
Cos 37° = 10 / x
x = 10 / Cos 37°
x = 12.52
Hence the length of the hypotenuse is 12.52 yards.
Learn more about cosine of the angle click;
https://brainly.com/question/9932656
#SPJ1
Somebody tell me the answer for both please
Answer:
see attached
Step-by-step explanation: