Answer:it’s b
Step-by-step explanation:
On edn
i need answer for question e
Answer:
area of e = 72m²
Step-by-step explanation:
formula to find area for parallelogram: bh
The first step is to separate the shapes, 2 parallelograms and one square
Let's find the area of the parallelograms
A = bh
A = 14 x 4.5
A = 63m²
Since there are two of them, we multiply by 2
63m x 2 = 126m²
Now, we find the area of the square in the middle
To find the square, we have to find out the length of the sides, which is 3
next, we find the area of the square
A = a²
A = 3²
A = 9m²
Then we add those two
63 + 9 = 72
= 72m²
sorry if its wrong
which equation represents a tangent function with a domain of all real numbers such that where n is an integer?
The tangent function is defined as the ratio of the sine function to the cosine function. It is periodic with a period of pi and has vertical asymptotes at odd multiples of pi/2. An equation for a tangent function with a domain of all real numbers and n as an integer is given by the following equation:
y = tan(x + n(pi))
The tangent function is defined as the ratio of the sine function to the cosine function, and it is periodic with a period of pi. It has vertical asymptotes at odd multiples of pi/2.
The tangent function can be represented by the following equation:
y = tan(x)
Where x is the angle measured in radians.
If we want to shift the graph of the tangent function by a certain amount, n, in the horizontal direction, we can use the following equation:
y = tan(x + n(pi))
Where n is an integer.
For example, if n = 2, then the graph of the tangent function would be shifted 2pi units to the left, and the equation would be:
y = tan(x - 2pi)
If n = 3, then the graph of the tangent function would be shifted 3pi units to the left, and the equation would be:
y = tan(x - 3pi)
And so on for any integer value of n.
To know more about tangent function: https://brainly.com/question/29117880
#SPJ11
An icecream shop has 10 flavors. One can choose 4 different
flavors. What is the total number of possible flavor
combinations?
a.
252
b.
462
c.
120
d.
330
e.
210
2.
An ice cream shop has 10 flavors and one can choose 4 different flavors. The question asks for the total number of possible flavor combinations.Therefore, we need to find the number of ways in which 4 flavors can be chosen from 10 flavors.
In such cases where order does not matter and repetitions are not allowed, we can use the formula for combinations which is as follows:C(n, r) = n! / (r! (n - r)!)Where n is the total number of items, r is the number of items being chosen at a time and ! represents the factorial function.
Using this formula we can find the total number of possible flavor combinations. Substituting the values in the above formula, we get:C(10, 4) = 10! / (4! (10 - 4)!)C(10, 4) = (10 * 9 * 8 * 7) / (4 * 3 * 2 * 1)C(10, 4) = 210Hence, there are 210 possible flavor combinations when one can choose 4 different flavors
.Explanation:The formula to be used for this type of question is combination. Combination is the method of selecting objects from a set, typically without replacement (without putting the same item back into the set) and where order does not matter. The formula for combination is given by C(n,r)=n!/(r!(n-r)!).
For more questions on: combinations
https://brainly.com/question/29595163
#SPJ8
HELP ME!!! 20 points!!
Use an area model to multiply (6x-1)(3x+2) . Write your answer as a sum.
Answer:
25
Step-by-step explanation:
true or false: if you are given a graph with two shiftable lines, the correct answer will always require you to move both lines.
False. if you are given a graph with two shif table lines, the correct answer will always require you to move both lines.
In a graph with two shiftable lines, the correct answer may or may not require moving both lines. It depends on the specific scenario and the desired outcome or conditions that need to be met.
When working with shiftable lines, shifting refers to changing the position of the lines on the graph by adjusting their slope or intercept. The purpose of shifting the lines is often to satisfy certain criteria or align them with specific points or patterns on the graph.
In some cases, achieving the desired outcome may only require shifting one of the lines. This can happen when one line already aligns with the desired points or pattern, and the other line can remain fixed. Moving both lines may not be necessary or could result in an undesired configuration.
However, there are also situations where both lines need to be shifted to achieve the desired result. This can occur when the relationship between the lines or the positioning of the lines relative to the graph requires adjustments to both lines.
Ultimately, the key is to carefully analyze the graph, understand the relationship between the lines, and identify the specific criteria or conditions that need to be met. This analysis will guide the decision of whether one or both lines should be shifted to obtain the correct answer.
Learn more about graph from
https://brainly.com/question/19040584
#SPJ11
Problem 7-28 A student selects his answers on a true/false examination by tossing a coin (so that any particular answer has a .50 probability of being correct). He must answer at least 70% correctly in order to pass. Find his probability of passing when the number of questions is
To find the probability of passing the true/false examination when the number of questions is n, we need to use binomial distribution. We need to plug in the values and calculate the probability of passing for a specific number of questions n
Let X be the number of correct answers the student gets. Since the probability of getting a correct answer is 0.50, we have X ~ Bin(n, 0.50).
To pass the exam, the student must answer at least 70% of the questions correctly. This means that X must be greater than or equal to 0.70n. We can write this as:
P(X >= 0.70n) = 1 - P(X < 0.70n)
Using the binomial distribution formula, we can find the probability of getting less than 0.70n correct answers:
P(X < 0.70n) = ∑(i=0 to 0.70n-1) (n choose i) * 0.50^i * 0.50^(n-i)
We can use a calculator or software to evaluate this sum. For example, if n = 50, we get:
P(X < 0.70n) = P(X < 35) = 0.0738
Therefore, the probability of passing the exam when the number of questions is 50 is:
P(X >= 0.70n) = 1 - P(X < 0.70n) = 1 - 0.0738 = 0.9262
So, the student has a 92.62% chance of passing the exam if there are 50 true/false questions and he answers them by tossing a coin.
To find the probability of passing the true/false examination with a 70% correct answer requirement, we will use the binomial probability formula. The binomial probability formula is:
P(X = k) = C(n, k) * p^k * (1-p)^(n-k)
Where:
- P(X = k) is the probability of getting k correct answers out of n questions
- C(n, k) is the number of combinations of n items taken k at a time
- p is the probability of getting a correct answer (0.50 in this case)
- n is the number of questions
- k is the number of correct answers
Since we need to find the probability of passing when the number of questions is not specified, let's assume there are n questions. To pass the exam, the student must answer at least 70% of the questions correctly. Therefore, k must be greater than or equal to 0.7n.
The probability of passing the exam can be calculated by summing up the probabilities of getting at least 70% correct answers:
P(passing) = sum(P(X = k)) for k = ceil(0.7n) to n
Where ceil() is the ceiling function that rounds up to the nearest integer.
Now we need to plug in the values and calculate the probability of passing for a specific number of questions n. Please provide the number of questions on the examination to get the exact probability of passing.
Learn more about binomial distribution at: brainly.com/question/31197941
#SPJ11
P=2 (1+b)
Make 1 the subject.
Answer:
1= P÷2 -b
Step-by-step explanation:
1+b= P÷2
1=P÷2 -b
Considering the three general types of geometry (flat, spherical, and saddle-shaped), when do the angles in a triangle add to 180°?
The angles in a triangle always add up to 180°, regardless of the type of geometry. This holds true for flat, spherical, and saddle-shaped geometries. The sum of the angles in any triangle is a fundamental property of Euclidean geometry.
This is known as the Triangle Sum Theorem.In spherical geometry, which is the geometry on the surface of a sphere, the sum of the angles in a spherical triangle also adds up to 180 degrees. However, the angles in a spherical triangle are measured in spherical degrees instead of regular degrees.
In hyperbolic geometry, which is a non-Euclidean geometry with a saddle-shaped curvature, the sum of the angles in a hyperbolic triangle is still 180 degrees, but the individual angles can have negative values or be greater than 180 degrees in terms of regular degrees.
To know more about Euclidean Geometry visit:
https://brainly.com/question/31120908
#SPJ11
solve 4 sin ( 2 x ) = 2 for the two smallest positive solutions a and b, with a < bA =B =Give your answers accurate to at least two decimal places.
The two smallest positive solutions for 4 sin(2x) = 2 are x = π/12 and x = 5π/12.
How to solve the equation?Starting with 4 sin (2x) = 2, we can simplify it by dividing both sides by 4 to get:
sin (2x) = 1/2
To solve for the two smallest positive solutions a and b, we need to find the values of 2x that satisfy sin (2x) = 1/2.
We know that sin (π/6) = 1/2, so one solution is 2x = π/6, which means x = π/12.
The next solution can be found by adding the period of sin (2x), which is π. Therefore, the next solution is 2x = π - π/6 = 5π/6, which means x = 5π/12.
Thus, the two smallest positive solutions for x are:
a = π/12 ≈ 0.26
b = 5π/12 ≈ 1.31
Therefore, the solution is a = 0.26 and b = 1.31.
Learn more about Trigonometric equations
brainly.com/question/30710281
#SPJ11
Suppose a professor gives a multiple choice quiz containing 5 questions, each with 4 possible responses: a, b, c, d. What is the minimum number of students that must be in the professor's class in order to guarantee that at least 2 answer sheets must be identical
The minimum number of students that must be in the professor's class in order to guarantee that at least 2 answer sheets are identical is 1025.
In order to answer this question, we need to use the Pigeonhole Principle, which states that if there are n pigeonholes and more than n objects, then at least one pigeonhole must contain more than one object.
In this case, the "pigeonholes" are the different possible combinations of answers for the 5 questions, and the "objects" are the students in the class.
Since there are 4 possible responses for each question, there are 4^5 = 1024 possible combinations of answers.
Now, suppose there are only 1023 students in the class.
Each student can choose one of the 1024 possible combinations of answers, and since there are more students than combinations, at least one combination must be chosen by two or more students.
Here are 5 questions, the total number of different answer sheets is 4^5 = 1024.
This represents the "pigeonholes." 3.
To guarantee that at least two answer sheets are identical, we need 1024 + 1 = 1025 students. This represents the "pigeons.
" According to the Pigeonhole Principle, if there are n pigeonholes and n+1 pigeons, at least one pigeonhole must contain at least two pigeons.
In this case, having 1025 students (pigeons) ensures that at least two students have identical answer sheets (pigeonholes).
But we want to guarantee that at least 2 answer sheets are identical.
This means we need to have one more student than the number of possible combinations, so that there is no way for each combination to be chosen by a different student.
Therefore, the minimum number of students required in the professor's class is 1024 + 1 = 1025.
So if there are 1025 or more students in the class, we can be sure that at least two answer sheets must be identical.
For similar question on minimum number:
https://brainly.com/question/11510063
#SPJ11
There are x red counters and y blue counters in a bag. Two counters are chosen from the bag, at random. The probability of the counters both being blue is 57%. Work out the number of red and blue counters in the bag.
PLEASE HURRY !!!!
There are 12 red counters and 18 blue counters in the bag.
How to calculate the probability?We can use the formula for conditional probability to find the number of red and blue counters in the bag.
The probability of both counters being blue is:
P(blue and blue) = P(blue | blue) * P(blue) = (y/ (x+y)) * (y-1) / (x+y-1) = 57/100
We can then use this equation to find the value of y:
y = ((x+y) * 57/100) / ((x+y-1) * 100/57)
We can also use the equation:
P(red | blue) = P(red and blue) / P(blue) = P(red) * P(blue) / P(blue) = x * y / (x+y)
We can then use this equation to find the value of x:
x = (57 * (x+y)) / (100 - 57)
Now we have two equations with two variables:
y = ((x+y) * 57/100) / ((x+y-1) * 100/57)
x = (57 * (x+y)) / (100 - 57)
We can use the first equation to solve for y in terms of x and substitute into the second equation:
x = (57 * (x + (((x+y) * 57/100) / ((x+y-1) * 100/57)))) / (100 - 57)
Solving for x, we get x = 12 and y = 18
Therefore, there are 12 red counters and 18 blue counters in the bag.
Learn more about probability on:
https://brainly.com/question/24756209
#SPJ1
if 5 builders take 5 days to make 5 walls, how long would it take 100 builders to make 100 walls? days
To approach this type of problem, you have to make a couple of reasonable assumptions - first, that each worker works at the same pace, and second, that the effort to build each wall is the same.
Next, figure out how much effort is required to build one wall. The effort is measured in “working days”. So, how many days does one worker need to build one wall, or how many workers would be required to build one wall in one day? We can calculate this by dividing the 25 worker days used to build five walls by the number of walls (5). So we need five worker days per wall.
(5 workers) x (5 days) = 25 worker-days;
25 worker days/5 walls = 5 worker days per wall.
With 100 workers, it will take five days to build 100 walls. Each worker will build one wall in 5 days. So it will also take 5 days for all 100 workers to build all 100 walls.
100 x 5 = 500 worker days;
500 worker-days / 100 workers = 5 days (answer)
6x - 4y = 16 find the slope and y intercept
Answer: slope: 3/2
y-intercept: (0,-4)
Step-by-step explanation:
y=3/2x-4 is slope intercept form
A parallelogram originally has an area of 47 square inches. Find its new area if its base
is one-fourth times as long and its height is twice as long.
PLS HELP ME!! WILL GIVE LOTS OF POINTS AND GIVE BRAINLIEST!
Answer:
23.5
Step-by-step explanation:
So this is a parallelogram so the area formlula is b*h=47? That's a no go. It is saying that if the base is 1/4th and the height is increasing by 2 so basically 1/4b*2h=1/2bh bh so it will be represented as 47 so 1/2*47=23.5
Which graph is correct?
The graph of the inequality y ≥ (1/2)x - 1 and x - y > 1 is attached. Shannon's graph is correct.
What is an equation?An equation is an expression that shows the relationship between two or more numbers and variables. Equations can either be linear, quadratic, cubic and so on depending on the degree.
Inequalities are used for the non equal comparison of numbers and variables.
Given the inequalities:
y ≥ (1/2)x - 1 (1)
and
x - y > 1 (2)
The graph of the inequality is attached. Shannon's graph is correct.
Find out more on equation at: https://brainly.com/question/2972832
#SPJ1
Quiz Active
1
2
B
8
The figure shows five points. A point has been translated right and up.
D
9 10
Based on the graph, which statements about the points could be true? Check all that apply.
The point (5, 10) has not been translated in the given figure.Hence this statement is false.
The graph shows five points.
A point has been translated right and up.
Now, the statements that are true based on the graph are as follows:
The point (9, D) has been translated right and up.Answer: False
There is no information given about point (9, D).
So, we cannot say anything about the translation of point (9, D).
The point (1, 8) has been translated right and up.Answer: True
As explained above, the point (1, 8) has been translated 7 units to the right and 2 units up to get the new point (8, 10). So, this statement is true.
The point (2, 9) has been translated right and up.Answer: False
The point (2, 9) has not been translated in the given figure.
So, this statement is false.
Statement 4: The point (8, B) has been translated right and up.Answer: True
The point (8, B) has been translated 1 unit up in the given figure. So, this statement is true.
The point (5, 10) has been translated right and up.Answer: False
The point (5, 10) has not been translated in the given figure.
So, this statement is false.
For more questions on translated:
https://brainly.in/question/33380281
#SPJ8
Given a random variable X with expected value ix and variance, find the expected value and variance of Y = (X - µX)/Xσ
The expected value of Y is 0, and the variance of Y is 1. To find the expected value of Y, we substitute the expression for Y into the definition of the expected value.
The expected value of Y is given by E(Y) = E((X - µX)/(Xσ)). Since E(aX) = aE(X) for any constant a and random variable X, rewrite the expression as E(Y) = (1/(Xσ))E(X - µX).
By linearity of expectation, E(X - µX) = E(X) - µE(X) = E(X) - µX, where µX is the expected value of X.
∴ E(Y) = (1/(Xσ))(E(X) - µX) = (1/(Xσ))(µX - µX) = 0.
Hence, the expected value of Y is 0.
To find the variance of Y, we use the property Var(aX) = a²Var(X) for any constant a and random variable X.
First, let's find the variance of (X - µX)/(Xσ).
Using the property Var(aX) = a²Var(X),
Var((X - µX)/(Xσ)) = Var(X - µX)/Var(Xσ) = Var(X - µX)/(Xσ)².
Since Var(aX) = a²Var(X),
Var(X - µX) = Var(X) - µ²Var(X) = Var(X) - µX².
Substituting this back into Var((X - µX)/(Xσ)),
Var((X - µX)/(Xσ)) = (Var(X) - µX²)/(Xσ)². Simplifying further,
Var((X - µX)/(Xσ)) = (Var(X) - µX²)/(X²2σ²2).
∴ the variance of Y is (Var(X) - µX²)/(X²σ²) = (Var(X) - (µX)²)/(X²σ²) = (Var(X) - (E(X))²(X²σ²) = (Var(X) - E(X)²)/(X²σ²).
Learn more about constants here: https://brainly.com/question/30288589
#SPJ11
Please Help!! |
The dimensions, in inches (in) , of a can that contains 7 tamals is shown. The company would like to change the radius of the can to 2 in. Part B: The company knows that the metal used for the can costs &0.002 per square inch. Determine the increase in cost of the new can.
The increase in cost of the new can is approximately $0.031.
We can start by finding the volume of the current can:
V = πr^2h
where r is the current radius and h is the current height. We are given that the current radius is 1.5 in and the height is 4.5 in, so:
V = π(1.5)^2(4.5)
V ≈ 31.82 in^3
Next, we can find the volume of the new can with a radius of 2 in:
V = πr^2h
where r is the new radius (2 in) and h is the same as before (4.5 in):
V = π(2)^2(4.5)
V ≈ 56.55 in^3
The increase in volume is:
ΔV = 56.55 - 31.82
ΔV ≈ 24.73 in^3
To find the increase in cost, we need to find the increase in surface area of the can. The surface area of a cylinder is:
A = 2πrh + 2πr^2
We can use this formula to find the current surface area and the new surface area:
Current surface area:
A = 2π(1.5)(4.5) + 2π(1.5)^2
A ≈ 47.12 in^2
New surface area:
A = 2π(2)(4.5) + 2π(2)^2
A ≈ 62.83 in^2
The increase in surface area is:
ΔA = 62.83 - 47.12
ΔA ≈ 15.71 in^2
Finally, we can find the increase in cost by multiplying the increase in surface area by the cost per square inch:
Cost increase = ΔA x $0.002/in^2
Cost increase ≈ $0.031
Therefore, the increase in cost of the new can is approximately $0.031.
Learn more about radius here:
https://brainly.com/question/13449316
#SPJ11
Show that if we had a polynomial-time algorithm for computing the
length of the shortest TSP (traveling salesman problem) tour, then we
would have a polynomial-time algorithm for nding the shortest TSP
tour. Be sure to address the concept of degeneracy, that is, when there
might be two or more tours of the same length, possibly involving some
of the same edges.
If we had a polynomial-time algorithm for computing the length of the shortest TSP tour, then we would also have a polynomial-time algorithm for finding the shortest TSP tour by using the following approach: Generate all possible tours, For each tour, compute its length, The shortest tour is the one with the minimum length.
The first step, generating all possible tours, can be done in polynomial time. This is because the number of possible tours is a polynomial function of the number of cities.
The second step, computing the length of each tour, can also be done in polynomial time. This is because the length of a tour is a polynomial function of the distances between the cities.
Therefore, the overall algorithm for finding the shortest TSP tour is polynomial-time.
Visit here to learn more about polynomial function:
brainly.com/question/29047085
#SPJ11
One of the ideas that you have explored in previous courses is how to describe a set of data. One of the ways that you may have seen before is finding an average (also called a mean). Read the Math Notes box for this lesson to review what a mean is and how to find it. Then find the mean for each set of data below. a. Jane's quiz scores: 82, 64, 73, 91, 85 b. The number of cats your teammates have as pets: 0, 1, 3, 2 c. The number of minutes Pam talked on the phone: 35, 40, 12, 16, 25, 10
The mean of the given data set is 27.6.
What exactly is Mean?The mean is the average of a set of values in mathematics and statistics. The mean can be calculated in a variety of ways, including the simple arithmetic mean (add the numbers and divide the total by the number of observations), geometric mean, and harmonic mean.So, mean:
M = (35 + 40 + 12 + 16 + 25 + 10)/5M = 138/5M = 27.6Therefore, the mean of the given data set is 27.6.
Know more about Mean here:
https://brainly.com/question/1136789
#SPJ9
The correct question is given below:
One of the ideas that you have explored in previous courses is how to describe a set of data. One of the ways that you may have seen before is finding an average (also called a mean). Read the Math Notes box for this lesson to review what a mean is and how to find it. Then find the theme of the data below. The number of minutes Pam talked on the phone: 35, 40, 12, 16, 25, 10. Mean =?
3) Uranus has a diameter of 50724000 metres. Calculate the volume of Uranus in m³,
giving your answer in standard form to 3 decimal places.
Note that the formula for volume of a sphere is V=r^3 where r is radius.
12
[1]
The volume of Uranus having a diameter of 50724000 m is 6.829 x 1022 m3.
What is meant by volume?Volume is defined as the quantity of the three-dimensional space occupied by a closed three-dimensional figure. In the case of any object, volume is measured in cubic units. In cases of solid objects, their volume is measured in cubic units of length, such as meters, centimeters, etc.
To calculate the volume of spherical objects, viz. for a planet (assuming it is an ideal sphere in shape), the following formula is applied:
Volume (V) = 4/3 π\(R^{3}\) cubic units
where R = radius and π = 3.14, a mathematical constant.
It is given that the diameter ( D ) of Uranus = 50724000 m.
Therefore radius ( R ) = D/ 2 = 50724000 m/ 2 = 25362000 m.
Therefore volume of planet Uranus = 4/3 π\(R^{3}\).
Substituting π by 3.14 and R by 25362000m, we get
Volume = 6.829 x 1022 \(m^{3}\)
To learn more about volume, visit :
https://brainly.com/question/15737689
#SPJ9
2 4/5 x = -1 1/4 help please
Answer: -25/56
Step-by-step explanation: To find x, we must divide both sides of the equation by 2 4/5. Start by turning both sides into improper fractions:
14/5 x = -5/4
Now we divide -5/4 by 14/5 which is equal to -5/4 * 5/14, giving us the answer of -25/56.
Find all the complex roots. Write the answer in exponential
form. The complex fourth roots of 3−33i. Z0= z1= z2= z3=
The complex fourth roots of 3−33i are: \(z_0\) = 3.062\(e^{(-21.603)}\), \(z_1\) = 1.513\(e^{(22.247)}\), \(z_2\) = 0.3826\(e^{(22.247)}\) and \(z_3\) = 1.198\(e^{(76.247)}\).
To find the complex fourth roots of 3-33i, we can use the polar form of the complex number:
3-33i = 33∠(-86.41)
Then, the nth roots of this complex number are given by:
\(z_k\) = \(33^{(1/n)}\) × ∠((-86.41 + 360k)/n) for k = 0, 1, 2, ..., n-1
For n = 4, we have:
\(z_0\) = \(33^{(1/4)}\) × ∠(-86.41/4) ≈ 3.062∠(-21.603°)
\(z_1\) = \(33^{(1/4)}\) × ∠(88.99/4) ≈ 1.513∠(22.247°)
\(z_2\) = \(33^{(1/4)}\) × ∠(196.99/4) ≈ 0.3826∠(49.247°)
\(z_3\) = \(33^{(1/4)}\) × ∠(304.99/4) ≈ 1.198∠(76.247)
So the complex fourth roots of 3-33i are approximate:
\(z_0\) = 3.062\(e^{(-21.603)}\)
\(z_1\) = 1.513\(e^{(22.247)}\)
\(z_2\) = 0.3826\(e^{(22.247)}\)
\(z_3\) = 1.198\(e^{(76.247)}\)
Learn more about the complex roots at
https://brainly.com/question/5498922
#SPJ4
Philll weights 120 lb Kim weighs 75% as phill eathan weigh 90% as much as Kim. And Amy weighs 2/3 as much as earthen what is the average weight of them?
Answer:
Step-by-step explanation:
Choose the Theorem needed to find x, then find x.
Base Angle
Triangle Sum
Exterior Angle
Third Angle
Answer: triangle sum , x= 9
Step-by-step explanation:
The triangle angle sum theorem states that the 3 interior angles of a triangle sum to 180 degrees. Add all of the angle measures together and set equal to 180. (3x-4)+(5x-7)+(13x+2) = 180. Combine like terms. 21x -9 = 180. Add 9 to both sides. 21x= 189. Divide both sides by 21. X = 9
HELP ME PLEASEEEEE PLEASEEEEE
Answer:
5.46π cm³
Step-by-step explanation:
Volume of sphere= 4/3πr³
= 4/3×π×(1.6)³ cm³
=5.46π cm³
hope this helped you!
Peyton invested $300 into a savings account. The equation
A = 300(1.005)12t models the amount in Peyton's account A after t
years. How much will be in Peyton's account after 7 years?
Please help me, GodBless.
Answer:
-6
Step-by-step explanation:
To find the slope, you do y₂ - y₁ / x₂ - x₁
y₂ - y₁ / x₂ - x₁
= -35 - 11 / 5 - 1
= -24 / 4
= -6
The slope is -6
Answer:
-6
Step-by-step explanation:
Hi,
To find the slope when given a table, just pick two points, subtract the y values, and then divide them by the x values after you subtract them as well. Here's what I mean...
Let's use 1, -11 and 5, -35
So...
-35 - (-11)
This is the change in y. -35 - (-11) is the same thing as -35 + 11 (subtracting negative switches to adding it)
You get -24
Now, the change in x.
5 - 1 = 4
So, -24/4 and you get the slope of : -6
I hope this helps :)
Patricia bought 4 apples and 9 bananas for $12. 70. Jose bought 8 apples and 11 bananas for $17. 70 at the same grocery store.
What is the cost of one apple?
The cost of one apple is $0.70.
Let's assume that the cost of one apple is "a" dollars and the cost of one banana is "b" dollars. We can create two equations based on the information given:
4a + 9b = 12.70 ...(1)
8a + 11b = 17.70 ...(2)
To solve for "a", we can use elimination method by multiplying equation (1) by 8 and equation (2) by -4, so that the coefficients of "a" in both equations will be equal and opposite:
32a + 72b = 101.60
-32a - 44b = -70.80
Adding these two equations, we get:
28b = 30.80
Simplifying and solving for "b", we get:
b = 1.10
Now, we can substitute the value of "b" in equation (1) and solve for "a":
4a + 9(1.10) = 12.70
4a + 9.90 = 12.70
4a = 2.80
a = 0.70
Therefore, the cost of one apple is $0.70.
Learn more about cost ,
https://brainly.com/question/30045916
#SPJ4