The possible dimensions of S1, can range from 0 to 4, and if S1 ≠ S2, then the possible dimensions of S1 can range from 1 to 4, where the dimension of S1 is equal to the dimension of S2 plus 1 up to a maximum dimension of 4.
(1) The possible dimensions of S1, when S2 is a nonzero subspace contained inside it and dim(S2) = 4, can be any integer value from 0 to 4.
(2) If S1 ≠ S2, then the possible dimensions of S1 can range from 1 to 4. Since S1 ≠ S2, it means that S1 must have at least one additional vector that is not present in S2. Therefore, the dimension of S1 can be equal to the dimension of S2 plus 1 (dim(S2) + 1), up to the maximum possible dimension of 4.
To elaborate further, when S1 ≠ S2, it implies that there exists a vector in S1 that is not in S2. This additional vector increases the dimension of S1 by one. Hence, the possible dimensions of S1 can be 1, 2, 3, or 4, as long as it is greater than or equal to the dimension of S2 plus 1. However, it is important to note that the specific dimension of S1 depends on the specific vectors and subspaces involved in the given context.
To learn more about Subspaces, visit:
https://brainly.com/question/17517360
#SPJ11
YOOOO can somebody help me with this
Answer:
Area= MULTIPLICATION
So, 13x9x4x15x10=70200
70200 Square inches.
There are two rectangles in the idiosyncratic shape. In order to find the area of the figure, we need to solve for one rectangle first.
The formula for solving the area of a rectangle is \(A = lw\). For the smaller rectangle on the left, we have both the length and width, so we can just multiply after plugging in the numbers into the equation; \(A = 13 * 4\). The 13 represents the length and the 4 represents the width. After solving, we get 52 inches squared for the first rectangle.
The larger rectangle, we already have the length and width as well, so we can just plug the numbers into the formula, \(A = 15 *10\), as 15 represents the length and the 10 represents width. 15 × 10 = 150.
After doing this, we need to add up the two rectangles together, which we get a sum of 202. The total area of the figure is 202 inches squared.
Determine the equation of the inverse of y =1/5* o^x+2
y=in( 3* )-2
y=in 3* )+2
X
5
y=in( 5x )-2
O y=In( 5x )+2
Answer: C
Step-by-step explanation:
For her phone service, Leila pays a monthly fee of $27, and she spends an additional $0.06 per minute of use. The least she has been charged in a month is $102.90.
What are the possible numbers of minutes she has used her phone in a month?
Use m for the number of minutes, and solve your inequality for m.
Answer:
Step-by-step explanation:
First Of all, Say the N-word, Now if she said the N-word, shell be given 27 dollars,Now I need to do my Homework, if i made you laugh, mark me the Brainliest
the data are the number of machines in a gym. you sample five gyms. one gym has 12 machines, one gym has 15 machines, one gym has ten machines, one gym has 22 machines, and the other gym has 20 machines. what type of data is this? group of answer choices qualitative data
As per the number of gym machines, the type of data is b. quantitative discrete data.
A discrete quantitative variable has a distinct quantitative meaning but can only take particular integer values rather than any value within a period. The number of needle sticks, the number of births, and the number of hospitalisations are a few examples of discrete numeric factors.
Similarly to that, the information given in the question refers to the quantity of gym equipment, which qualifies as quantitative data because it is a numerical assessment. Furthermore, rather than representing a continuous range of values, the data is discrete, which means that it reflects a limited collection of whole integers such as 10, 12, 15, 20, and 22. These numbers are the total number of gym machines that are available.
Complete Question:
the data are the number of machines in a gym. you sample five gyms. one gym has 12 machines, one gym has 15 machines, one gym has ten machines, one gym has 22 machines, and the other gym has 20 machines. what type of data is this?
a. Qualitative data
b. Quantitative discrete data
c. Discreet data
Read more about quantitative discrete data on:
https://brainly.com/question/30020010
#SPJ4
What is expected to happen to the \( \$ / Y \) en exchange when US inflation is \( 7 \% \) and Japanese inflation is \( 8 \% \) ? A. the US\$ is expected to depreciate by \( 8 \% \) relative to the Ye
When US inflation is 7% and Japanese inflation is 8%, it is expected that the US dollar (USD) will depreciate by 8% relative to the Japanese yen (JPY).
Inflation refers to the general increase in prices of goods and services in an economy over time. When a country experiences higher inflation than another, its currency tends to depreciate relative to the other country's currency. In this case, with the US inflation at 7% and Japanese inflation at 8%, it is expected that the US dollar will depreciate by 8% against the Japanese yen.
Higher inflation erodes the purchasing power of a currency, leading to a decrease in its value. As the US experiences slightly lower inflation compared to Japan, the purchasing power of the US dollar decreases relative to the Japanese yen. Consequently, it would require more US dollars to purchase the same amount of Japanese yen, resulting in a depreciation of the US dollar.
It is important to note that exchange rates are influenced by a multitude of factors, including not only inflation differentials but also interest rates, economic growth, geopolitical events, and market sentiment. Therefore, while inflation differentials play a role in determining exchange rate movements, they are just one component among many that can affect currency values.
Learn more about expected here:
https://brainly.com/question/29644459
#SPJ11
find the distance between A(7, 10) and B(9,-3). Write your answer as a radical and as a decimal rounded for nearest ten.
A(7,10) and B(9,-3) are separated by 13.1 units.
How to calculate distance between two points?
The separation between two points the coordinates of two points in space are used in the formula. In coordinate geometry, a two-dimensional or three-dimensional space can be used to calculate the distance between two points using the distance formula. The Pythagoras theorem is sometimes used to calculate the distance between two places.
The distance between two locations on a plane is the length of the line segment connecting them. The following equation is frequently used to determine the separation between two points:
d = √[(x₂-x₁)² + (y₂-y₁)²] -- (i)
Given, the two points are A≡(7,10) and (9,-3)
On comparing A and B with (x₁, y₁) and (x₂, y₂) respectively, we get
x₁ = 7, y₁ = 10, x₂ = 9, y₂ = -3
Therefore using the formula in (i), we get
Distance between A & B = √[(9-7)²+(-3-10)²] = √173 = 13.15 = 13.1 units
To learn more about distance between two points, tap on the link below:
https://brainly.com/question/24661980
#SPJ9
Answer and explanation please
If you have 2 1/2 yards of fabric and want to make 3 pillows how much fabric will you need to use for each pillow
We know that
• You have 2 1/2 yards of fabric.
,• You want to make 3 pillows.
To find the number of yards of fabric you can use for each pillow, we just have to divide. We know that 2 1/2 is equivalent to 5/2 yards.
\(\frac{\frac{5}{2}}{3}=\frac{5}{2\cdot3}=\frac{5}{6}\)Therefore, you can use 5/6 yards of fabric for each pillow.pentagon ABCDE is reflected over the line y = x, then rotated 270 counterclockwise about the origin to create pentagon A’ B’ C’ D’ E’. select all the attributes that are the same for pentagon ABCDE and pentagon A’ B’ C’ D’ E’
Therefore, the following attributes of pentagon ABCDE and pentagon A'B'C'D'E' are the same: The shape of the pentagon (i.e., the relative positions of the vertices), The side lengths of the pentagon, The interior angles of the pentagon and The perimeter of the pentagon
What is polygon?
A polygon is a two-dimensional geometric shape that is made up of straight lines connecting a sequence of points, which are called vertices.
Reflecting a polygon over the line y=x means interchanging the x and y coordinates of all its vertices. Thus, if ABCDE is reflected over y=x, it becomes A'B'C'D'E' where A' is the image of A after reflection over y=x, B' is the image of B after reflection over y=x, and so on.
Rotating a polygon counterclockwise about the origin by 270 degrees means replacing each vertex (x,y) by (-y,x). Therefore, if A'B'C'D'E' is rotated 270 counterclockwise about the origin, it becomes A''B''C''D''E'' where A'' is the image of A' after rotation, B'' is the image of B' after rotation, and so on.
Since reflecting a polygon over a line and then rotating it by a multiple of 90 degrees about the origin are both rigid transformations, they preserve the shape and size of the polygon. Therefore, the following attributes of pentagon ABCDE and pentagon A'B'C'D'E' are the same:
The shape of the pentagon (i.e., the relative positions of the vertices)
The side lengths of the pentagon
The interior angles of the pentagon
The perimeter of the pentagon
The area of the pentagon
The distance between any two corresponding vertices of the two pentagons.
To learn more about polygons from the given link:
https://brainly.com/question/24464711
#SPJ9
2. Based on the cash flows shown in the chart below, compute the IRR and MIRR for Project Erie. Suppose that the appropriate cost of capital is 12 percent. Advise the organization about whether it should accept or reject the project.
Project Erie
Time 0 1 2 3 4 5
Cash Flow $12,000 $2,360 $4,390 $1,520 $980 $1,250
Answer:
IRR = -5.19%
MIRR = 3.33%
The company should reject the project
Step-by-step explanation:
Internal rate of return is the discount rate that equates the after-tax cash flows from an investment to the amount invested
IRR can be calculated with a financial calculator
Cash flow in year 0 = -$12,000
Cash flow in year 1 = $2,360
Cash flow in year 2 = $4,390
Cash flow in year 3 = $1,520
Cash flow in year 4 = $980
Cash flow in year 5 = $1,250
IRR = 5.19%
The modified internal rate of return is a capital budgeting method used to determine the profitability of an investment. The MIRR assumes that cash inflows are reinvested at the firm's cost of capital and outflows are financed at the firm's financing cost.
MIRR = (Future value of a firm's cash inflow / present value of the firm's cash outflow)^ (1/n) - 1
n = number of years
present value of the firm's cash outflow = $12,000
Future value of a firm's cash inflow
Future value of year 1's cash flow = $2,360 x (1.12^4) = $3,713.51
Future value of year 2's cash flow =$4,390 x (1.12^3) = $6167.63
Future value of year 3's cash flow =$1,520 x (1.12^2) = $1906.69
Future value of year 4's cash flow = $980 X 1.12 = 1097.60
Future value of year 5's cash flow = 1250
Add the future values together = $14,135.43
($14,135.43 / $12,000)^0.2 - 1 = 3.33%
The project should be rejected because the IRR is negative.
To find the IRR using a financial calculator:
1. Input the cash flow values by pressing the CF button. After inputting the value, press enter and the arrow facing a downward direction.
2. After inputting all the cash flows, press the IRR button and then press the compute button.
Solve the formula h = 54t + 1/2 * a * t ^ 2 for a.
The initial equation is:
\(h=54t+\frac{1}{2}at^2\)First, we subtract 54t on both sides as:
\(\begin{gathered} h-54t=54t+\frac{1}{2}at^2-54t \\ h-54t=\frac{1}{2}at^2 \end{gathered}\)Multiplying by 2, on both sides:
\(\begin{gathered} 2\cdot(h-54t)=2\cdot\frac{1}{2}at^2 \\ 2h-108t=at^2 \end{gathered}\)Dividing by t^2, we get:
\(\begin{gathered} \frac{2h-108t}{t^2}=\frac{at^2}{t^2} \\ \frac{2h}{t^2}-\frac{108}{t}=a \end{gathered}\)Answer:
\(a=\frac{2h}{t^2}-\frac{108}{t}\)3.1 The solutions of a quadratic equation are given by x of m will this equation have? a) Two equal solutions? -2 ±√2m+5 For which value(s)of m will the equation have? two equal solution
The value of m for which the equation will have two equal solutions is given as follows:
m = -2.5.
What is the discriminant of a quadratic equation and how does it influence the solutions?A quadratic equation is modeled by the rule presented as follows:
y = ax² + bx + c
The discriminant of the quadratic function is given as follows:
Δ = b² - 4ac.
The numeric value of the coefficient and the number of solutions of the quadratic equation is defined as follows:
Δ > 0: two real solutions.Δ = 0: one real solution = two equal real solutions.Δ < 0: two complex solutions.For this problem, the discriminant is given as follows:
Δ = 2m + 5 (it is the term that goes inside the root during the solution).
Hence, to have two equal solutions, the condition is:
Δ = 0.
Hence:
2m + 5 = 0
2m = -5
m = -5/2
m = -2.5.
More can be learned about quadratic equations at https://brainly.com/question/1214333
#SPJ1
There are 9 members on a board of directors. If they must form a subcommittee of 3 members, how many different subcommittees are possible?
a) Draw the graph of y = 4x - 1
on the grid.
In
40
8
b) Use the graph to estimate the
value of x when y = 1
6
Straight Line Graphs
View One Minute Version
Overview
Answer:
a) linked a screenshot of the graph.
b) when y=1 x=.5
Step-by-step explanation:
4 is the slope, which makes the graph angle different. Starting at the origin (0,0) if you go over 1 and up 4 that is how you can draw the slope on a graph.
-1 makes the line go to the right 1 time so instead of the graph being on the origin (0,0) it will be placed on the coordinate points of (1,0)
To find the x value. Find 1 on the y-axis of the line graph. Go to the right to find where the line intersects. After you find that go straight down to find the x-value (0.5)
In the moring 134 are checked out from the library in the afternoon 254 are checked out and 118 books are checked out in the evening how many books in all checked out from the library?
In the morning, 134 books are checked out from the library.
In the afternoon, 254 books are checked out from the library. In the evening, 118 books are checked out from the library. The total number of books checked out from the library can be calculated by adding the number of books checked out in the morning, afternoon, and evening.
To find the total number of books checked out, perform the following addition:134 (books checked out in the morning) + 254 (books checked out in the afternoon) + 118 (books checked out in the evening) = 506Therefore, the total number of books checked out from the library is 506.
To know more about calculated visit:
https://brainly.com/question/30781060
#SPJ11
Francis has a large vegetable garden that covers 47 of her backyard. Her patio covers 13 of the yard, and the rest is grass. What portion of Francis’s yard is grass?
If someone can please answer this!!
i dont now this question
Answer:
x = 1Step-by-step explanation:
3x + 2 = (2x + 13)/3
9x + 6 = 2x + 13
9x - 2x = 13 - 6
7x = 7
x = 7 : 7
x = 1
I set z=t=0(x,y,z,t)
and I got a partial solution (0,1,0,0).
I solved two homogeneous matrices once for z=1
and t=0
, then for z=0
and t=1
and I got two solutions (1,1,1,0)
and (1,1,0,1).
Then, I got (0,1,0,0)+a∗(1,1,1,0)+b∗(1,1,0,1
)
Therefore, all possible results are (0,1,0,0),(1,0,1,0),(1,0,0,1),(0,1,1,1)
Would this be correct?
The correct set of possible results would be (0, 1, 0, 0), (1, 2, 1, 0) and (1, 2, 0, 1).
Your approach seems to be correct, but there seems to be a minor mistake in your final list of possible solutions. Let's go through the steps to clarify.
Given the initial conditions z=t=0, you obtained a partial solution (0,1,0,0).
Next, you solved the homogeneous equations for z=1 and t=0, which resulted in a solution (1,1,1,0).
Similarly, solving the homogeneous equations for z=0 and t=1 gives another solution (1,1,0,1).
To find the general solution, you combine the partial solution with the solutions obtained in the previous step, using parameters a and b.
(0,1,0,0) + a(1,1,1,0) + b(1,1,0,1)
Expanding this expression, you get:
(0+a+b, 1+a+b, 0+a, 0+b)
Simplifying, you obtain the following set of solutions:
(0, 1, 0, 0)
(1, 2, 1, 0)
(1, 2, 0, 1)
Therefore, the correct set of possible results would be:
(0, 1, 0, 0)
(1, 2, 1, 0)
(1, 2, 0, 1)
Note that (0, 1, 1, 1) is not a valid solution in this case, as it does not satisfy the initial condition z = 0.
To learn more about set ,
https://brainly.com/question/30368748
#SPJ4
please help with this
( 20 - 16 / 16 ) × 100 =
( 4 / 16 ) × 100 =
( 1 / 4 ) × 100 =
100/4 =
% 25
when firing a handgun, how far should you hold it from your body? nine inches one foot eighteen inches at arm's length
When firing a handgun , you should hold the handgun (d) at arm's length , from the body .
When firing a handgun, it is recommended to hold it at arm's length, from your body. This allows for proper control and aim of the firearm, as well as providing a buffer between you and the potential dangers of the discharge.
Holding the handgun too close to your body can also interfere with accuracy and control, as your arms may obstruct the movement of the gun. It's important to follow manufacturer guidelines and seek proper training and follow all safety procedures when handling handgun to ensure responsible and safe use.
The given question is incomplete , the complete question is
When firing a handgun, how far should you hold it from your body?
(a) 9 inches
(b) one foot
(c) eighteen inches
(d) at arm's length
Learn more about Handgun here
https://brainly.com/question/6756651
#SPJ4
The volume of this cube is 125 cm³. What is the length of each side?
Answer: 5
Step-by-step explanation: A cube has all lengths equal.
Volume is 125 find the cube root
please help me do this
Answer:
Step-by-step explanation:
(3x + 1)/x = 1/(x -3) Cross multiply
(3x + 1)(x - 3) = x Remove the brackets. Use FOIL
f:3x*x = 3x^2
o:3x*(-3) = -9x
i:1*x = x
L : 1 * - 3 = -3
FOIL: 3x^2 -9x +x - 3
FOIL: 3x^2 - 8x - 3
3x^2 - 8x - 3 = x Subtract x from both sides
3x^2 - 8x -x - 3 = 0 Combine
3x^2 - 9x - 3 = 0 Factor
It's rather ugly. I had to use the quadratic equation
a = 3
b = - 9
c = - 3
x1 = 3.3
x2 = - 0.3
Help !!! What is the equivalent exponential expression for the radical expression below
Answer:
A. \( \huge \purple { {(2 + 6)}^{ \frac{1}{2} } }\)
Step-by-step explanation:
\( \huge \sqrt{2 + 6} \\ \\ \huge \red{= {(2 + 6)}^{ \frac{1}{2} } }\)
according to statista, united airlines controlled 15% of the domestic market during a recent year. a random sample of 125 domestic passengers that year was selected. using the normal approximation to the binomial distribution, what is the probability that 10 or fewer passengers from this sample were on united airlines flights? group of answer choices 0.0485 0.0192 0.2877 0.4286
Answer:
Step-by-step explanation:
1 point) a card is drawn from a regular deck of 52 cards and is then put back in the deck. a second card is drawn. what is the probability that:
The probability of drawing any two cards in a row from a regular deck of 52 cards is 1/52. If we want to calculate the probability of drawing a specific card twice in a row, we need to multiply the probability of each individual draw, resulting in a probability of 1/2,704
The probability of drawing a particular card from a deck of 52 cards is 1/52. Since the card is put back in the deck after the first draw, the deck is returned to its original 52-card state, and the probability of drawing any specific card on the second draw remains the same at 1/52.
To find the probability of drawing a specific card twice in a row, we multiply the probability of the first draw (1/52) by the probability of the second draw (also 1/52). Therefore, the probability of drawing a specific card twice in a row is (1/52) x (1/52) = 1/2,704.
However, if we are simply looking for the probability of drawing any two cards in a row, the probability of the second card being any card (since the first card was replaced) is 1. Therefore, the probability of drawing any two cards in a row from a deck of 52 cards is (1/52) x 1 = 1/52.
The probability of drawing any two cards in a row from a deck of 52 cards is 1/52. This is because the first card is replaced in the deck, returning the deck to its original 52-card state. Therefore, the probability of drawing any specific card on the second draw remains 1/52. However, the probability of drawing a specific card twice in a row is (1/52) x (1/52) = 1/2,704.
The probability of drawing any two cards in a row from a regular deck of 52 cards is 1/52. If we want to calculate the probability of drawing a specific card twice in a row, we need to multiply the probability of each individual draw, resulting in a probability of 1/2,704. It is important to note that if the first card is not replaced, the probability of the second card being any card will change, and the calculation will be different.
To know more about probability visit:
brainly.com/question/32117953
#SPJ11
The diameter of a circle is 9 m. Find its circumference in terms of \piπ.
C equals
Answer:
c = 28.27 m
Step-by-step explanation:
This is the answer based on my math. I hope this helps you!
Answer: Circumference==2πr=28.28m
Step-by-step explanation:C=2πr
C=2×3.142×4.5=28.28m
Evaluate the integral by changing to spherical coordinates. 4 0 16 − x2 0 32 − x2 − y2 xy dz dy dx x2 y2
By changing to spherical coordinates, the value of integral is 0
To evaluate this integral using spherical coordinates, we need to express the integrand and the bounds of integration in terms of spherical coordinates.
First, we express the differential volume element in spherical coordinates:
dV = ρ2 sinφ dρ dφ dθ
where ρ is the radial distance, φ is the polar angle, and θ is the azimuthal angle.
Next, we need to find the bounds of integration. The integrand is non-zero only when 0 ≤ x2 + y2 ≤ 4 and 0 ≤ z ≤ 32 - x2 - y2. This corresponds to the region inside a sphere of radius 2 centered at the origin, truncated by the plane z = 32 - x2 - y2. In spherical coordinates, the sphere has equation ρ = 2, and the plane has equation z = 32 - ρ2.
We can then express the bounds of integration as follows:
0 ≤ θ ≤ 2π
0 ≤ φ ≤ π/2
0 ≤ ρ ≤ 2
0 ≤ z ≤ 32 - ρ2
Next, we express the integrand in spherical coordinates:
xy(32 - x2 - y2) = ρ3 sinφ cosθ sinφ sinθ (32 - ρ2 sin2φ)
We can now evaluate the integral:
∭E xy(32 - x2 - y2) dz dy dx
= ∫0^2 ∫0^π/2 ∫0^2 (ρ3 sinφ cosθ sinφ sinθ (32 - ρ2 sin2φ)) ρ2 sinφ dρ dφ dθ
= ∫0^2 ∫0^π/2 ∫0^2 (32ρ3 sin3φ cosθ sinθ - ρ5 sin3φ cosθ sinθ) dρ dφ dθ
= ∫0^2 ∫0^π/2 (-4 cosθ sinθ (2 cos3φ - 5 cosφ)) dφ dθ
= 0 (by symmetry)
Therefore, the value of the integral is 0.
Learn more about Integral
brainly.com/question/18125359
#SPJ11
In calculating the monthly payment for a five-year loan, what value should be used for n, the number of periods over which the loan is repaid, as it appears in the following formula? P = P V times StartFraction i over 1 minus (1 + i) superscript negative n EndFraction
a.5
b.12
c.60
d.120
The answer is C,60
Answer:
C
Step-by-step explanation:
EDGE2021
The value should be used for n, the number of periods over which the loan is repaid in 60 periods.
What formula is used to calculate the monthly payment?The value of the monthly payment is given by;
P = PV × i / 1-(1+i)⁻ⁿ
Where,
PV is the present value or the amount of the loan.
i is the interest rate per period and is calculated by dividing the yearly percent rate by 100 and by the number of periods in a year.
n is the total number of periods and is calculated as the product of the number of periods in a year times the number of years.
Therefore,
The value should be used for n, the number of periods over which the loan is repaid;
n = 6 years × 12 months/year = 60 months = 60 periods.
Hence, The value should be used for n, the number of periods over which the loan is repaid in 60 periods.
To know more about Monthly payment click the link given below.
brainly.com/question/26351994
#SPJ5
the fifth term of an arithmetic progression is 40 and the seventh term is 28 more than the 3rd term. Find the first and 10th term.
Answer:
Step-by-step explanation:
t5 = a + (5-1)d
t5 = a + 4d
40 = a + 4d
t3 = a + 2*d
t7 = a + 2d + 28 = a + 6d
Start with the seventh term which has 2 equal answers
a + 2d + 28 = a + 6d Subtract a from both sides
2d + 28 = 6d Subtract 2d from both sides
28 = 4d Divide by 4
28/4 = d
d = 7
==================
t5 = a + 4d = 40
a + 4*7 = 40
a = 40 - 28
a = 12
===================
First term is 12
10th term is
t10 = 12 + (10 - 1)*7
t10 = 12 + 9*7
t10 = 75
Interesting question. Thanks for posting
What is the probability of the complement of rolling a number less than 5 by using a six-sided die? StartFraction 1 over 6 EndFraction One-third Two-fifths Two-thirds
Answer:
1/3 = 0.3333 = 33.33%
Step-by-step explanation:
In the six-sided die we have 6 possible values, from 1 to 6.
To roll a number less than 5, the options are: 1, 2, 3 or 4.
We have 4 options, so the probability is P = 4/6 = 2/3
To find the complement of this probability, we just need to calculate 1 minus the probability, so we have that:
complement = 1 - P = 1 - (2/3) = 1/3 = 0.3333 = 33.33%
(We could also find the probability of rolling 5 or 6, which is the complement of rolling less than 5)
Answer:
1/3
Step-by-step explanation:
I took the test