Answer: 387
Step-by-step explanation: Have a blessed day hopefully this helps!
Answer:387
Step-by-step explanation:
bc it is
helpp. Kayla covered the outside of a gift box shaped like a rectangular prism with paper.
The box is 1.2 feet long, 3.4 feet wide, and 2.5 feet high.
Which of the following is closest to the total surface area of this box?
Class
a.10.2 ft
b.15.58 ft
c.31.16 ft
d.242.74 ft
Answer: B
Step-by-step explanation:
Write a static method named hasMidpoint that accepts three integers as parameters and returns true if one of the integers is the midpoint between the other two integers
Midpoint (int a, int b, int c) {return (a + b) / 2 == c || (a + c) / 2 == b || (b + c) / 2 == a;} In a nutshell, this method checks whether any one of the given three integers is the midpoint of the other two integers.
The following is the method signature for has Midpoint public static boolean has Midpoint (int a, int b, int c). It takes three integers as arguments and returns true if one of the three integers is the midpoint of the other two integers. Method explanation: The method has Midpoint checks whether any one of the given three integers is the midpoint of the other two. If any one integer is the midpoint of the other two integers, the method returns true. Otherwise, it returns false.
The midpoint formula is (a + b) / 2, which calculates the midpoint of two integers a and b. Therefore, we can utilize the formula to test whether the middle integer is the midpoint of the other two integers: (a + b) / 2 == c || (a + c) / 2 == b || (b + c) / 2 == a. If any one of the conditions is true, the function returns true because one of the integers is the midpoint of the other two integers. Below is the complete implementation of the method. public static boolean has Midpoint(int a, int b, int c) {return (a + b) / 2 == c || (a + c) / 2 == b || (b + c) / 2 == a;} In a nutshell, this method checks whether any one of the given three integers is the midpoint of the other two integers.
To know more about integers visit:-
https://brainly.com/question/490943
#SPJ11
2. What is the distance between the points M(-8,11) and N(3,7)?
a) 11.7
b) 10.2
c) 18.7
d) 19.4
Answer:
I'm not sure I feel like it's A
Step-by-step explanation:
-8 is 11 units away from 3 but I do not know where the 7 came from for answer A.
If I were you I would not trust my answer
The distance between the points M(-8,11) and N(3,7) is 11.7 units option (a) 11.7 is correct.
What is a distance formula?It is defined as the formula for finding the distance between two points. It has given the shortest path distance between two points.
The distance formula can be given as:
\(\rm d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}\)
It is given that:
The two points are:
M(-8,11) and N(3,7)
From the distance formula, we can find the distance between these two points:
Applying the distance formula:
\(\rm d=\sqrt{(3-(-8))^2+(7-11)^2}\)
d = √137
d = 11.7 units
Thus, the distance between the points M(-8,11) and N(3,7) is 11.7 units option (a) 11.7 is correct.
Learn more about the distance formula here:
brainly.com/question/18296211
#SPJ2
Express x in term of y : x/7+2y=6
\( \Large{\boxed{\sf x = 42 - 14y}} \)
\( \\ \)
Explanation:"Expressing x in terms of y" could also be written as "making x the subject of the equation".
This means that we will have to isolate x.
\( \\ \)
Given equation:
\( \sf \dfrac{x}{7} + 2y = 6 \)
\( \\ \)
Subtract 2y from both sides of the equation:
\( \sf \dfrac{x}{7} + 2y \bold{-2y} = 6 \bold{-2y} \\ \\ \Longleftrightarrow \sf \dfrac{x}{7} = 6 - 2y \)
\( \\ \)
Multiply both sides by 7:
\( \sf \dfrac{x}{7} \times 7 = (6 - 2y) \times 7 \)
\( \\ \)
Expand the right side of the equation:
\( \sf x = 6 \times 7 + (-2y) \times 7 \\ \\ \boxed{\boxed{\sf x = 42 - 14y}} \)
Given,
x/7+2y = 6
Step 1: Add -2y to both sides.
(1/7)x + 2y + (−2y) = 6 + (−2y)
(1/7)x = (−2y) + 6
Step 2: Divide both sides by 1/7.
(1/7)x / (1/7) = (−2y) + 6 / (1/7)
x = (−14y) + 42
So, x = (−14y) + 42
Hope my answer helps you✌️
Mark BRAINLIEST
help me for 10 points
edge= 5 in
to find:the surface area of the given cube.
solution:\(s.a = 6 {a}^{2} \)
\(s.a = 6 \times {5}^{2} \)
\(s.a = 150 \: {in}^{2} \)
hence, the surface area of the given cube is 150 square inches.
Find the n 2/9= 14/ n
Answer:
hope it helps
Step-by-step explanation:
I hope u can understand
5. What is the Boolean duality principle?
The Boolean duality principle is a fundamental concept in Boolean algebra which states that any statement or expression in the algebra can be transformed into an equivalent form by interchanging the roles of AND and OR operators, as well as 0's and 1's.
The Boolean duality principle, also known as De Morgan's laws, is a fundamental concept in Boolean algebra that states that every Boolean expression remains valid if you perform the following steps:
1. Swap AND (⋅) operators with OR (+) operators and vice versa.
2. Replace all 1's with 0's and all 0's with 1's.
3. Complement (invert) all variables.
In other words, the Boolean duality principle allows us to derive a dual expression from an original Boolean expression by applying these transformations. This principle is useful in simplifying Boolean expressions and designing digital circuits.
To learn more about Boolean algebra, refer:-
https://brainly.com/question/30882492
#SPJ11
Worth 60 points for a rapid reply- find the area of each regular polygon. Answers are rounded to the nearest whole number.
The area of the regular polygons with 12 sides(dodecagon) and 5 sides (pentagon) are 389.06 in² and 19.87 in² respectively.
How to calculate for the area of the polygonArea of regular polygon = 1/2 × apothem × perimeter
perimeter = (s)side length of octagon × (n)number of side.
apothem = s/[2tan(180/n)].
11 = s/[2tan(180/12)]
s = 11 × 2tan15
s = 5.8949
perimeter = 5.8949 × 12 = 70.7388
Area of dodecagon = 1/2 × 11 × 70.7388
Area of dodecagon = 389.0634 in²
Area of pentagon = 1/2 × 5.23 × 7.6
Area of pentagon = 19.874 in²
Therefore, the area of the regular polygons with 12 sides(dodecagon) and 5 sides (pentagon) are 389.06 in² and 19.87 in² respectively.
Read more about area here:https://brainly.com/question/27440983
#SPJ1
Need help asap don’t understand
Please hurry I will mark you brainliest
Find the surface area
Triangle area = 8 x 3/2
= 12
12 x 2 = 24cm^2 for 2 triangles
Height of rectangle must be found, so use pythag on triangle
a^2+ b^2 = c^2
16 + 9 =c^2
C=5
A= 5 x 12
= 60
60 x 3 triangles in total is 180cm^2
180cm^2 + 24cm^2 = 204cm^2
Ans: 204cm^2
The Copper river school district collected data about class size in the district.The table shows the class sizes for five randomly selected seventh- and eighth-grade classes
Answer:
A
Step-by-step explanation:
A because the mean absolute deviation of an eighth grade class is less than that of a seventh grade class. Also, the class size is larger on average for eighth graders (35>31).
A car vehicle price history for a certain make and model contains the following list of yearly price values: $21,000 $18,900 $17,010 $15,309 $13,778.10 $ 12,400.29 The original price of the car was $21,000. It exponentially depreciated to $18,900 after 1 year and continued depreciating by the same percentage each year thereafter . What will the value of the car be after 8 years ? $
The value of the car after 8 years is $9,039.81
What is the Percentage?
Percentage, which is a relative figure used to denote hundredths of any amount. Since one per cent is equal to one-tenth of anything, 100 percent stands for everything, while 200 percent refers to double the amount specified.
As an illustration, 1% of 1,000 chickens is equivalent to 1/100 of 1,000, or 10 birds, and 20% of the quantity is equal to 20% of 1,000, or 200. These relationships may be generalized as x = PT/100 where x is the amount equal to a certain percentage P of T and T is the total reference quantity selected to represent 100%. As a result, T is 1,000, P is 1, and x is determined to be 10 in the case of 1 percent of 1,000 chickens.
As we can see each year 10% of the actual value of a car the decrease
For example, $21,000 decreased to $18,900
21000-18000/21000 = 0.1x 100% = 10%
Next year
$18,900 decreased to $17,010
18900-17010/18900 = 0.1x100% = 10%
in 6th year the price will be
12400.29 - 1240.029 = $11,160.261
in 7th year the price will be
11,160.261-11,16.0261=$10,044.2349
in 8th year the price will be
10,044.2349-10,04.42349=$9,039.81
Learn more about Percentage from the link below
https://brainly.com/question/14801224
#SPJ1
let r(t)=ti t^3j tk the tangential component of acceleration is
The tangential component of acceleration is \(18t^3 / \sqrt{(9t^4 + 2)}\)
How to find the tangential component of acceleration?We need to take the derivative of velocity with respect to time:
\(r(t) = ti + t^3j + tk\)
\(v(t) = r'(t) = i + 3t^2j + k\)
\(a(t) = v'(t) = 6tj\)
The tangential component of acceleration is the component of acceleration that is in the direction of the velocity vector. In other words, it is the projection of the acceleration vector onto the velocity vector.
To find the tangential component of acceleration, we need to project the acceleration vector onto the velocity vector.
The dot product of the acceleration vector and the unit vector in the direction of the velocity vector gives the tangential component of acceleration.
The velocity vector is \(i + 3t^{2j} + k\) which has a magnitude of \(\sqrt{(1 + 9t^4 + 1)} = \sqrt{(9t^4 + 2)}.\)
The unit vector in the direction of the velocity vector is \((1/\sqrt{(9t^4 + 2)} ) * (i + 3t^{2j} + k)\).
The dot product of the acceleration vector and the unit vector in the direction of the velocity vector is:
\(a(t) . (1/\sqrt{(9t^4 + 2)} ) * (i + 3t^{2j} + k) = 6t * (3t^2 /\sqrt(9t^4 + 2)} ) = 18t^3 / \sqrt{(9t^4 + 2)}\)
Therefore, the tangential component of acceleration is \(18t^3 / \sqrt{(9t^4 + 2)}\)
Learn more about acceleration.
brainly.com/question/12550364
#SPJ11
... due tomorrow... help pls
Click all the questions that are considered statistical questions. No links please.
Answer:
The first three are not statistical, the last three are.
The sum of 6 consecutive even numbers is 126.
What is the fourth number in this sequence?
Answer:
The 6 numbers are: 16, 18, 20, 22, 24, and 26 so the answer would be 22.
The circumference of a circle varies directly as its diameter. When the diameter of a circle is 6 inches the circumference is 18.84 inches then the diameter of a circle with circumference of 6.28 is?
Answer:
The diameter is 2
Step-by-step explanation:
We can use a ratio to solve
6 x
------- = --------------
18.84 6.28
Using cross products
6 * 6.28 = 18.84x
Divide each side by 18.84
37.68/18.84 = x
2 =x
Two exponential functions are shown in the table.
Which conclusion about f(x) and g(x) can be drawn from
the table?
X
Х
f(x)=2*
g(x) =
2
4
1
4
1
O The functions f(x) and g(x) are reflections over the x-
axis.
O The functions f(x) and g(x) are reflections over the y-
axis.
O The function f(x) is a decreasing function, and g(x) is
an increasing function.
The function f(x) has a greater initial value than g(x).
1
2
1
0
-1
1
2
A-NI-
-2
4
Save and Exit
Nex
Submit
Given:
The two exponential functions are shown in the given table.
To find:
The correct conclusion about the functions f(x) and g(x).
Solution:
The given functions are:
\(f(x)=2^x\)
\(g(x)=\left(\dfrac{1}{2}\right)^x\)
The function g(x) can be written as:
\(g(x)=\dfrac{1}{2^x}\)
\(g(x)=2^{-x}\)
\(g(x)=f(-x)\)
It means the graphs of f(x) and g(x) are reflections over the y-axis. So, option B is correct.
Since \(g(x)\neq -f(x)\), therefore the functions f(x) and g(x) are not the reflections over the x-axis. So, option A is incorrect.
The function f(x) is an increasing function because the base of the exponent is \(2>1\). The function g(x) is a decreasing function because the base of the exponent is \(\dfrac{1}{2}<1\). So, option C is incorrect.
At x=0 the value of f(x) is 1 and the value of g(x) is also 1. It means the functions has same initial values. So, option D is incorrect.
Therefore, the correct option is B.
We can conclude that g(x) is a reflection over the y-axis of f(x).
How to find the transformation that relates the two functions?
The two functions are:
f(x) = 2^xg(x) = (1/2)^xYou can see the graph of these functions at the end of the answer.
You can also notice that g(x) can be written as:
g(x) = (1/2)^x = 2^(-x) = f(-x)
Then this is a reflection over the y-axis, thing that you can also see in the graph below.
So the correct option is:
"The functions f(x) and g(x) are reflections over the y-axis."
If you want to learn more about reflections, you can read:
https://brainly.com/question/4289712
Find the volume of a right circular cone that has a height of 19 ft and a base with a diameter of 18.7 ft. Round your answer to the nearest tenth of a cubic foot.
Answer:
1739.42393 cubic foot
Step-by-step explanation:
volume of cone= 1/3× πr²h
r= d/2= 9.35ft
putting the value in the formula and calculating
l
Find the equation of the line that is parallel to the given line and passes through the given point.
y = 0.6x − 6; (−3, 2)
The equation is y = .
f(x)= 5x+6. Find f(6)
Functions
Answer:
f(6)=5×6+6=30+6=36
put the value 6 in x.
help me pls pls pls
nonsense=report
nice answer=brainles
pls dont waste my point
Answer:
27: 4 m
28: 60,000 cm
29: 8 m
30: 12 m
31: 90,000
32: 56 m
33: 650,000
34: 45 m
35: 230,000
36: 24
Have a great day!!
Please rate and mark brainliest!!
Answer:
Step-by-step explanation:
27. 4m²
28. 60 000cm²
29. 8m²
30. 12m²
31. 90 000cm²
32. 5.6m²
33. 650 000cm²
34. 45m²
35. 230 000cm²
36. 24m²
hope dis helps!!!!!
Among the cast aluminum parts manufactured on a certain day, 78% were flawless, 20% had only minor flaws, and 2% had major flaws. find the probability that a randomly chosen part has a flaw (major or minor). round the answer to two decimal places.
The probability that a randomly chosen part has either a major flaw or a minor flaw is 22% or 0.22.
To find the probability that a randomly chosen cast aluminum part has a flaw (major or minor), we can simply add the percentages of parts with minor flaws and major flaws together.
From the given information, 20% of the parts had minor flaws and 2% had major flaws. When we add these percentages together, we get:
20% (minor flaws) + 2% (major flaws) = 22%
Thus, there is a 22% probability that a randomly chosen part has a flaw, either major or minor. Rounded to two decimal places, this would be written as 0.22.
In summary, by considering the percentages of parts with minor and major flaws, we can determine the overall probability of selecting a flawed part. In this case, the probability is 22% or 0.22 when rounded to two decimal places.
Learn more about probability here: https://brainly.com/question/25839839
#SPJ11
a decimal in which one or more digits repeat infinitely
Answer:
A repeating decimal or recurring decimal is decimal representation of a number whose digits are periodic (repeating its values at regular intervals) and the infinitely repeated portion is not zero. The infinitely repeated digit sequence is called the repetend or reptend.
CAN I PLEASE HAVE SOME HELP???? I AM TIMMED!!!
Question
A net of a triangular prism is shown below.
What is the surface area, in square meters, of the triangular prism?
which of the following expressions is equivalent to -10?
a.-7 3
b.-3 - 7
c.3 - 7
d.7 - 3
The expression which is equivalent to -10 is the option b, -3 - 7.
Explanation:
We can use subtraction and addition of integers to get the value of the given expression. We can write the given expression as;
-3 - 7 = -10 (-3 - 7)
The addition of two negative integers will always give a negative integer. When we subtract a larger negative integer from a smaller negative integer, we will get a negative integer.
If we add -3 and -7 we will get -10. This makes the option b the correct answer.
Learn more about expression here:
https://brainly.com/question/28170201
#SPJ11
SSR + SSE - SST = ?
The intercept of the line: Y=5X+10,985.00 is?
The intercept of the line is 10,985.00.
Given, Y=5X+10,985.00
We can write the equation in the form of y = mx + c
Where y is the dependent variable, x is the independent variable, m is the slope and c is the intercept.
So, y = 5x + 10,985.00
So, the intercept of the line is 10,985.00.
The intercept of the line is 10,985.00.
Know more about the intercept here:
https://brainly.com/question/25722412
#SPJ11
create a formula with structured references to calculate the percentage
The formula (Value / Total) * 100 allows you to calculate the percentage using structured references. By plugging in the specific value and the total value into the formula, you can determine the percentage and express it as a relative proportion or ratio.
To calculate the percentage using structured references, you can use the following formula:
= (Value / Total) * 100
The formula above calculates the percentage by dividing the value you want to find the percentage of by the total value, and then multiplying the result by 100 to express it as a percentage.
"Value" represents the specific value you want to find the percentage of.
"Total" represents the total value or the whole amount that serves as the reference for the percentage calculation.
Let's consider an example:
Suppose you have a table with sales data, and you want to calculate the percentage of sales for a specific product compared to the total sales.
Product Sales
Product A 500
Product B 750
Product C 1000
Total 2250
To calculate the percentage of sales for Product B, you can use the formula:
= (750 / 2250) * 100
The result will be 33.33%, indicating that Product B's sales account for approximately 33.33% of the total sales
The formula (Value / Total) * 100 allows you to calculate the percentage using structured references. By plugging in the specific value and the total value into the formula, you can determine the percentage and express it as a relative proportion or ratio.
To know more about Percentage, visit
brainly.com/question/24877689
#SPJ11
Write the Standard Form of the equation for a circle centered at point (-2 , -8) and has a radius of 4.
Answer:
Step-by-step explanation:
The center is going to be written as (x + 2) and (y + 8).
Notice that the point x and y values are turned around. That happens because you want to determine where the circle's center is when it is put in the circle formula
The radius must be squared. It represents a distance.
(x + 2)^2 + (y + 8)^2 = 4^2
The formula is the one above. The graph shows the center at (-2,-8)
find the recurrence relation for power series solution of the differential equation: y′′ (1 x)y=0
Main Answer:The recurrence relation for the power series solution of the given differential equation is: a_(n+2) = a_n / (n+2)
Supporting Question and Answer:
How can we find the recurrence relation for the power series solution of a differential equation?
To find the recurrence relation for the power series solution of a differential equation, we can assume the solution can be expressed as a power series and substitute it into the differential equation. By equating the coefficients of like powers of x to zero, we can derive the recurrence relation for the coefficients of the power series. This recurrence relation allows us to express the coefficients in terms of previous coefficients, providing a systematic way to compute the coefficients of the power series solution.
Body of the Solution: To find the recurrence relation for the power series solution of the differential equation y′′(1 - x)y = 0, we can assume that the solution can be expressed as a power series:
y(x) = ∑(n=0)^(∞) a_n x^n
First, to find the first and second derivatives of y(x):
y'(x) = ∑(n=1)^(∞) na_nx^(n-1)
=∑(n=0)^(∞) (n+1)×a_(n+1)×(x)^n
y''(x) =∑(n=2)^(∞) n(n-1)a_nx^(n-2)
= ∑(n=0)^(∞) (n+2)(n+1)×a_(n+2)×(x)^n
Now, substitute these expressions into the differential equation:
∑(n=0)^(∞) (n+2)(n+1)×a_(n+2)×(x)^n× (1 - x) × ∑(n=0)^(∞) a_n x^n = 0
Expand and collect terms:
∑(n=0)^(∞) [(n+2)(n+1)×a_(n+2) - (n+1)×a_n] ×( x)^n - ∑(n=0)^(∞) (n+2)(n+1)×a_(n+2)×(x)^(n+1) = 0
Now, equating the coefficients of like powers of x to zero:
For n = 0:
[(2)(1)×a_2 - (1)×a_0] = 0
a_2 = a_0
For n ≥ 1:
[(n+2)(n+1)×a_(n+2) - (n+1)×a_n] - (n+2)(n+1)×a_(n+2) = 0
a_(n+2) = (n+1)×a_n / ((n+2)(n+1)) = a_n / (n+2)
Final Answer: Hence, the recurrence relation for the power series solution of the given differential equation is:
a_(n+2) = a_n / (n+2);where a_0 is a constant representing the coefficient of x^0 in the power series solution.
To learn more about the recurrence relation for the power series solution of a differential equation from the given link
https://brainly.com/question/31476924
#SPJ4