Answer:
y=0x + 2
Step-by-step explanation:
HELP ME PLEASE Urgently !!!!
Answer:
The best bet would be x=40
Step-by-step explanation:
Find the pair of numbers that completes the factorization. x^2 - 3x - 40 = (x +?)(x-?)
a- 5,8
b- 4,10
c- 10,4
d- 8,5
answer
a. 5,8
explanation
use numbers in each answer choice
+5 * -8 = - 40
+5 -8 = -3
Consider the form \(x^2+bx+c\). Find a pair of integers whose product is \(c\) and whose sum is \(b\). In this case, whose product is -40 and whose sum is -3.
\(\longrightarrow\boxed{\bold{(-8,5)}}\)
Write the factored form using these integers.
\((x-8) \ (x+5)\)
Find the whole using the percent proportion. 70% of what number of hay bales is
63 hay bales?
Answer:
90
Step-by-step explanation:
Let the whole number be x.
100% is to x as 70% is to 63
100/x = 70/63
10/x = 10/9
10x = 90 * 10
x = 90
Answer: 90
Step-by-step explanation:
0.7x = 63, x = 63/0.7 = 90
1 yard in 6 minutes
Question 1
Part A
Find the unit rate.
Enter the correct answer in the box.
Answer: 0.166666667 yards OR 0.1524 meters OR 0.5 feet
Step-by-step explanation:
1 / 6 = 0.166666667 yards
1 yard = 0.9144 meters
0.9144 / 6 = 0.1524 meters
1 yard = 3 feet
3 / 6 = 0.5 feet
Coefficient of the variable 9x-36
Answer:
165
Step-by-step explanation:
Devante has a lunch account in the school cafeteria His starting balance at the beginning of the month is $35.50. The first wook, Davante bought 3 lunches and his account balance was $28.00. The second week. Devante
bought 5 lunches and his account balance was 515 50
In a model that relates the balance of his lunch account as a function of the number of lunches he buys, what does the rate of change represent?
A: the number of lunches he purchases
B: the starting balance of his lunch account
C: the amount of money in his lunch account
D: the amount of money he pays for each lunch
Answer:
D the amount of money he pays for each lunch
Step-by-step explanation:
In each lunch Devante has, he pays 2,50 $ according to:
Money in t = t₀ he has 35,50 $ paid 3 lunches and spent
35,50 - 28 = 7,5
Then the cost of each lunch is 7,5 / 3 = 2,5 $
After that
bought 5 lunches and spent 28 - 15,5 = 12,50
Again 12,5 / 5 = 2,5 $
Now the model for the situation is a straight line with a slope 2,5
In an x , y cartesian system in which y is money in the account and x is the number of lunches, such a straight line will be
y = b - m*x ( b the intercept on y and m the negative slope)
y = 35,50 - 2,5*x
So answering the question is lyrics D the amount of money he pays for each lunch
Suppose X and Y are two independent exponential variables. The mean of X is twice the mean of Y. If the probability of X exceeding 50 is 0.7788, what is the probability of Y exceeding 40
If X ~ Exponential(µ), then the mean of X is 1/µ. So if the mean of X is twice the mean of Y, then the mean of Y is 1/(2µ), so that Y ~ Exponential(2µ).
We're given that
P(X > 50) = 1 - P(X ≤ 50) = 1 - Fx (50) ≈ 0.7788
==> Fx (50) = P(X ≤ 50) ≈ 0.2212
where Fx is the CDF of X, which is given for 0 ≤ x < ∞ to be
Fx (x) = 1 - exp(-µx)
Solve for µ :
1 - exp(-50µ) ≈ 0.2212 ==> µ ≈ -ln(0.7788)/50 ≈ 0.005
Then we have
P (Y > 40) = 1 - P (Y ≤ 40) = 1 - Fy (40)
where Fy is the CDF of Y,
Fy (y) = 1 - exp(-2µy)
so that
P (Y > 40) ≈ 1 - exp(-2 × 0.005 × 40) ≈ 0.3297
Find an equation of the plane tangent to the following surface at the given point.z equals tangent Superscript negative 1 Baseline (xy );(0 comma 3 comma 0 )
Let f(x, y, z) = z - arctan(x y). Compute the gradient of f at the point (0, 3, 0):
∇ f(x, y, z) = (-y / (1 + x²y²), -x / (1 + x²y²), 1)
∇ f (0, 3, 0) = (-3, 0, 1)
This vector is orthogonal to the surface z = f(x, y). Then the equation of the tangent plane is
∇ f (0, 3, 0) • (x, y - 3, z) = 0
(-3, 0, 1) • (x, y - 3, z) = 0
-3x + z = 0
z = 3x
find an expression for sin (5 theta) as a fifth degree polynomial in the variable sin(theta) ?
On solving the provided question, we can say that the trigonometry sin3θcos2θ+cos3θsin2θ = 4sin3(1−2cos2θ)+sinθ
What is trigonometry?The area of mathematics knοwn as trigonometry examines the correlation between triangle side lengths and angles. The area first appeared in the Hellenistic era, arοund the third century BC. frοm the use of geometry in astronοmical study.
The area of mathematics knοwn as exact methods deals with specific trigonometric functions and hοw they might be used in calculations. There are six popular trigonοmetric functions in trigonometry. Sine, cosine, tangent, cοtangent, secant, and cosecant are their respective names and acronyms (csc). Studying the characteristics οf triangles, particularly right triangles, is called trigonοmetry. The study of geοmetry, however, is the characteristics of all geοmetric figures.
the trigonometry
sin3θcos2θ+cοs3θsin2θ=4sin3(1−2cos2θ)+sinθ
Use the variation cοs2θ=1−sin2θ to express sin(5θ) in terms of sinθ
sin5θ=4sin3θ(1−2(1−sin2θ))+sinθ(8(1−sin2θ}
To know more about trigonometry visit:
brainly.com/question/29002217
#SPJ1
A zip wire runs between two posts, 25m apart. The zip wire is at an angle of 10 degrees to the horizontal. Calculate the length of the zip wire.
∘
to the horizontal. Calculate the length of the zip wire
The length of the zip wire, with a 10-degree angle to the horizontal and a distance of 25 meters between the posts, is approximately 25.35 meters.
To calculate the length of the zip wire, we can use trigonometry. Let's consider the triangle formed by the zip wire, where the horizontal distance between the two posts is 25 meters and the angle between the zip wire and the horizontal is 10 degrees.
Using trigonometric functions, we can determine the length of the zip wire. In this case, we'll use the sine function because we have the opposite side (the vertical distance) and we want to find the hypotenuse (the length of the zip wire).
The formula for sine is:
sin(angle) = opposite / hypotenuse
Rearranging the formula, we have:
hypotenuse = opposite / sin(angle)
In this case, the opposite side is the vertical distance, which is h.
So, the formula becomes:
hypotenuse = h / sin(angle)
To find h, we can use the formula for the length of the zip wire:
h = 25 * tan(angle)
Substituting this into the previous formula, we get:
hypotenuse = (25 * tan(angle)) / sin(angle)
Calculating the value, we have:
hypotenuse = (25 * tan(10°)) / sin(10°)
Using a calculator, we find:
tan(10°) ≈ 0.1763
sin(10°) ≈ 0.1736
Substituting these values, we can calculate the length of the zip wire:
hypotenuse ≈ (25 * 0.1763) / 0.1736 ≈ 25.35 meters
Therefore, the length of the zip wire is approximately 25.35 meters.
For more question on length visit:
https://brainly.com/question/28322552
#SPJ8
graph the parabola x=1/2(y-2)^2-4. find and graph the vertex, focus, directrix, and focal chord endpoints.
1. Find the graph of the parabola attached below
2. Vertex (-4, 2) Focus (-7/2, 2) Directrix (x = -9/2) Endpoints (-7/2, 1) (-7/2, 3)
How do we find the vertex, focus, directrix, and focal chord endpoints or the parabola?For the parabola, x = 1/2(y-2)² - 4 we will use the equation x = 4p(y-k)² + h,
Vertex → (h, k)
In our given equation, (y - 2) → (y - k), so k = 2. The term on the rightmost side of our equation (-4) → h in the form, so we know h = -4. ∴ vertex (-4, 2).
focus → (h, k) = (-4, 2); P = 1/2
Parabola is symmetric around the x axis and so the focus lies a distance P, from the center, along the x axis.
∴ Focus is (-4 + p, 2)
(-4 + 1/2, 2) ⇒ (-7/2, 2)
directrix → x = d
Parabola is symmetric around the x axis and therefore the directrix is a line paralled to the y axis a distance away from the ceter (-4, 2) x coordinate.
∴ x = -4 - p ⇒ x = -4 - 1/2
x = 9/2
focal chord endpoints →
The focus of the parabola is (-7/2, 2).
The y-coordinate of the focus is 2, so the y-coordinates of the endpoints of the focal chord are 2 + 1 and 2 - 1, → 3 and 1.
Therefore, the endpoints of the focal chord are:
(-7/2, 3) and (-7/2, 1).
Find more exercises on parabola;
https://brainly.com/question/11911877
#SPJ1
The radius of a circle is 10 in. Find its circumference in terms of � π.
Answer:
20π [in].
Step-by-step explanation:
1. formula is:
C=π*2r;
2. the circumference according to the formula is:
C=π*10*2=20π.
Find all zeros? One zero has been given.
The zeros of the function f(x) = 2x⁴ + 11x³ + 16x² + x - 6 are x = -3, x = -2,
x = -1 and x = 1/2 respectively
What is the zeros of a function?The zero of a real-, complex-, or generally vector-valued function f, is a member x of the domain of f such that f(x) vanishes at x; that is, the function f attains the value of 0 at x, or equivalently, x is the solution to the equation f(x) = 0. Graphically, the real zero of a function is where the graph of the function crosses the x‐axis; that is, the real zero of a function is the x‐intercept(s) of the graph of the function.
In the given problem, the zero of the function;
f(x) = 2x⁴ + 11x³ + 16x² + x - 6; -3 are
f(-3) = 2(-3)⁴ + 11(-3)³ + 16(-3)² -3 - 6 = 0
f(-2) = 2(-2)⁴ + 11(-2)³ + 16(-2)² - 2 - 6 = 0
f(-1) = 2(-1)⁴ + 11(-1)³ + 16(-1)² - 1 - 6 = 0
f(1/2) = 2(1/2)⁴ + 11(1/2)³ + 16(1/2)² - 1/2 - 6 = 0
Learn more on zeros of a function here;
https://brainly.com/question/16550963
#SPJ1
QUESTION There are dozens of personality tests available on the World Wide Web (including one that tells the test taker which dead Russian composer he's most like). One test, scored on a scale of 0 to 200, is designed to give an indication of how "personable" the test taker is, with higher scores indicating more "personability" Suppose that 19 classmates have taken this test and scored as follows: 84, 68, 80, 52, 64, 68, 58, 83, 70, 54, 59, 73, 56, 72, 53, 57, 73, 51, 82 C Using the tool provided, construct a box-and-whisker plot for the data.
We need to make a box plot (also known as box-and-whisker) with the following data:
84, 68, 80, 52, 64, 68, 58, 83, 70, 54, 59, 73, 56, 72, 53, 57, 73, 51, 82.
select an expression that is equivalent to 2^4/8
Answer:
The answer is C
Step-by-step explanation:
c. 8√(2^4 )
given 2^(4/8) can be written as 2^(4×1/8)
eg: 2^(1/2) is √2 hence same rule we can apply here and since 2^(1/8) we can write as 8√2 and given 2^4
further knowledge: so if asked to expand more we can write it as 8√16 simplifying this further we get 2^(1/2) which is actually √2
for more on square roots: https://brainly.com/question/29286039
Janet is playing a game in which she interacts with an environment to solve a puzzle and to meet new characters. She really enjoys this game because there are no time constraints or pressure to perform with speed. What genre of game is Janet most likely playing?
simulation
action
adventure
sports
Answer:
adventure
Step-by-step explanation:
Answer:
adventure
Step-by-step explanation:
What is 2(3x + 12y - 5 - 17x - 16y +4) simplified?
Answer:
2(-14x-4y-1) / -28x-8y-2Step-by-step explanation:
2(3x + 12y - 5 - 17x - 16y +4)
the 2 outside the bracket means we need to multiply everything by 2
=
6x+24y-10-34x-32y+8
now put all the like-terms together
6x-34x+24y-32y+8-10
now add them together
=-28x-8y-2
now find the HCF
2
put 2 outside the bracket and then divide every number by 2
2(-14x-4y-1)
this is as simplified it can get
A random sample of 114 observations produced a sample mean of 30. Find the critical and observed values of z for the following test of hypothesis using The population standard deviation is known to be 5 and the population distribution is normal.
Complete Question
A random sample of 114 observations produced a sample mean of 30. Find the critical and observed values of z for the following test of hypothesis using α=0.01. The population standard deviation is known to be 5 and the population distribution is normal.
\(H_o: \mu =28\) versus H1: μ>28.
Round your answers to two decimal places.
\(z_{critical} =\)
Answer:
\(z_{critical} = 2.33\)
The observed value is \( z = 4.27 \)
Step-by-step explanation:
From the question we are told that
The sample size is n = 114
The sample mean is \(\= x = 30\)
The significance level is \(\alpha = 0.01\)
The population standard deviation is \(\sigma = 5\)
The null hypothesis is \(H_o: \mu =28\)
The alternative hypothesis is H1: μ>28.
Generally the test statistics (observed value ) is mathematically represented as
\( z = \frac{ \= x - \mu }{ \frac{\sigma }{\sqrt{n} } } \)
=> \( z = \frac{ 30- 28 }{ \frac{5}{\sqrt{114} } } \)
=> \( z = 4.27 \)
From the normal distribution table the critical value of \(\alpha = 0.01\) is
\(z_{critical} = 2.33\)
Pairs of shorts had a mark_up of 17%which includes profit and GST at a price of k29. 25.Find the cost price.
The cost price of the shorts is K22.50.
To find the cost price of the shorts, we need to reverse calculate the original price before the markup and taxes were applied.
Let's assume the cost price of the shorts is represented by C.
The markup of 17% is applied to the cost price, which means the selling price (including the markup) is 117% of the cost price.
117% of the cost price C can be calculated as (117/100) * C.
GST (Goods and Services Tax) is also included in the selling price. GST is typically calculated as a percentage of the selling price. In this case, the selling price of the shorts including GST is K29.25.
Since the GST is included in the selling price, we can subtract it from the selling price to obtain the selling price before GST.
Let's assume the GST rate is R% (as a decimal), then the selling price before GST can be calculated as:
Selling price before GST = Selling price - (Selling price × R)
In this case, the selling price before GST is K29.25, and the GST rate is 17% (0.17 as a decimal). Substituting these values into the equation, we have:
K29.25 = Selling price - (Selling price × 0.17)
Simplifying the equation
K29.25 = Selling price × (1 - 0.17)
K29.25 = Selling price × 0.83
Selling price = K29.25 / 0.83
Now we can substitute the selling price in terms of the cost price:
K29.25 / 0.83 = (117/100) × C
Simplifying the equation:
C = (K29.25 / 0.83) × (100/117)
Calculating the cost price C:
C = K22.50
Therefore, the cost price of the shorts is K22.50.
for such more question on cost price
https://brainly.com/question/25799822
#SPJ11
5
Select the correct answer from each drop-down menu.
Simplify the following polynomial expression.
(3x²-x-7) (5x²
The polynomial simplifies to an expression that is a
Reset
-
4x2) + (x+3)(x + 2)
✓with a degree of
Next
The polynomial simplifies to -x² + 8x + 1 with a highest degree of 2.
What is the simplification of the polynomial expression?To simplify a mathematical expression is to represent it in the least complicated form possible.
In general the simplest form is one that has used the fundamental properties of numbers, exponents, algebraic rules, etc. to remove any duplication or redundancy from the expression.
The given expression;
= (3x²- x - 7) - (5x² - 4x - 2) + (x + 3)(x + 2)
The simplified form of the given expression is calculated as follows;
= 3x² - x - 7 - 5x² + 4x + 2 + x² + 2x + 3x + 6
= -x² + 8x + 1
Thus, the polynomial simplifies to -x² + 8x + 1 with a highest degree of 2.
Learn more about simplification here: brainly.com/question/28008382
#SPJ1
can someone help ? i only have 36 min
Answer:
\( \boxed{ \bold{{ \boxed{ \sf8 {x}^{7} + 3 {x}^{6} + {x}^{5} + 5 {x}^{4} - 2 {x}^{3} }}}}\)
Step-by-step explanation:
Here, we have to arrange the polynomial from higher power to lower power.
So, Option C is the correct option
Hope I helped!
Best regards! :D
Two ropes are attached to a wagon, one horizontal to the west with a tension force of 30N, and the other east and at an angle of 30 degrees northward and a tension force of 40 N. Find the components of the net force on the cart. Show all work.
The net force on the cart is 62N
and the vertical component =36.64 N
the horizontal component= 50N
What is revolution of vector?
The process of splitting a vector into its components is called resolution of the vector. We resolve a vector into two components which are. component along the x-axis called horizontal component. component along the y-axis called vertical component
30N tension on the cart is westward which mean the vertical component will be 0 and the horizontal component will be 30N.
40N tension isN 30° E which means
the vertical component= 40 sin60=36.64N
Horizontal component= 40 cos 60= 20N
sum of vertical = 36.64N +0= 36.64N
sum of horizontal= 30N+20N= 50N
60° was used for tension 40N because the angle of vector must always lie on the horizontal axis
therefore the net force F is obtained by using Pythagoras theorem
F= √(50^2+36.64^2)
= 62N to the nearest whole number.
learn more about resolution of vectors from
https://brainly.com/question/17369412
#SPJ1
can someone help please
The slope of the line is 2.
Describe Slope?Slope is a measure of the steepness of a line or a surface. In geometry and mathematics, slope refers to the rate at which a line rises or falls as it moves horizontally. It is calculated as the ratio of the vertical change between two points on a line (the rise) to the horizontal change between those same two points (the run).
The slope of a line can be expressed as a fraction or a decimal. A positive slope indicates that the line is increasing as it moves from left to right, while a negative slope indicates that the line is decreasing as it moves from left to right. A slope of zero indicates a horizontal line, and a slope that is undefined indicates a vertical line.
In real-world applications, slope is used in a variety of fields, such as physics, engineering, and architecture. For example, slope is used to calculate the angle of a roof or a ramp, the rate of change in the value of a stock or a commodity, or the rate of change of a moving object. Understanding slope is an important concept in mathematics and has many practical applications in the real world.
The slope of a line passing through two points (x1, y1) and (x2, y2) is given by the formula:
m = (y2 - y1) / (x2 - x1)
Here, the given two points are (0, 2) and (-1, 0). Substituting these values into the slope formula, we get:
m = (0 - 2) / (-1 - 0) = (-2) / (-1) = 2
Therefore, the slope of the line is 2.
To know more about line visit:
https://brainly.com/question/16180119
#SPJ1
A study was conducted to determine if the salaries of librarians from two neighboring cities were equal. A sample of 15 librarians from each city was randomly selected. The mean from the first city was $28,900 with a standard deviation of $2300. The mean from the second city was $30,300 with a standard deviation of $2100. Construct a 95% confidence interval for mu 1minusmu 2.
Answer:
For the first city, the 95% confidence interval would be:
28,900 +/- 2300 x 3 = 28,900 +/-6900$
For the second city, the 95% confidence interval would be:
30,300 +/- 2100 x 3 = 30,300 +/- 6300$
The blue segment below is a radius of o .What is the length of the diameter
of the circle
Answer:
B.) 21.2 units
Step-by-step explanation:
Radius = Diameter divided by 2
So
Diameter = radius multiple by 2
Thirty is what percent of 20?
Answer:
150 percent
Step-by-step explanation:
30/20. Multiply both sides by 5. 150/100. 30 is %150 of 20
Answer:
150
Step-by-step explanation: from goog .le
Does the table show direct variation? If so, state the constant of variation.
Okay, here we have this:
Considering the provided table, we are going to analize if the table shows direct variation, so we obtain the following:
To identify if there is direct variation then we will calculate the ratios between the points, and if they are all the same then the table does show direct variation, then we have:
y=kx
k=y/x
5/2=2.5
45/18=2.5
80/30=2.66
Since the ratios between the points are not the same, then it does not represent a direct variation.
Find the monthly payment on a VCR with an installment price of $994.01, 12 monthly payments, and a down payment of $200.
Answer:
62.16
Step-by-step explanation:
994.01 - 200.00 / 12
A - on the po boyds at a emase the foot, 1, of building. He. Observes an obje- et on the top, P of the building at an angle of ele- building of 66 Aviation of 66 Hemows directly backwards to new point C and observes the same object at an angle of elevation of 53° · 1P) |MT|= 50m point m Iame horizontal level I, a a
Answer:
53\(x_{123}\) == 134 cf
Step-by-step explanation:
A - on the po boyds at a emase the foot, 1, of building. He. Observes an obje- et on the top, P of the building at an angle of ele- building of 66 Aviation of 66 Hemows directly backwards to new point C and observes the same object at an angle of elevation of 53° · 1P) |MT|= 50m point m Iame horizontal level I, a a
The height of the building is approximately 78.63 meters.
The following is a step-by-step explanation of how to solve the problem. We'll need to use some trigonometric concepts and formulas to find the solution.
Draw a diagram of the situation described in the problem to get a better understanding of the problem. The diagram would have a right-angled triangle with angle of elevation of 66° at the bottom left vertex and another angle of elevation of 53° at the bottom right vertex. The object on top of the building is at the vertex of the triangle. Point M and I on the diagram are points on the horizontal line of sight and on the ground respectively. We can label the diagram with the following values:Angle of elevation from point A = 66°Angle of elevation from point P = 53° Length of line segment AM = h Length of line segment MP = x Length of line segment IP = y Length of line segment MT = 50m. We'll use these values to calculate the length of h, which is the height of the building.Use the tangent ratio to find x:tan 66° = h / x => x = h / tan 66°. Use the tangent ratio to find y:tan 53° = h / y => y = h / tan 53°.We know that x + y = 50, so substituting the expressions for x and y from step 3 gives:h / tan 66° + h / tan 53° = 50h = 50 tan 66° tan 53° / (tan 53° + tan 66°) ≈ 78.63 m.Therefore, the height of the building is approximately 78.63 meters.
For more such questions on height, click on:
https://brainly.com/question/28122539
#SPJ8
Someone help me please
Answer:
15.66 cm
Step-by-step explanation:
180-66.4=113.6°
113.6÷360=0.315555555, which equals 31.55555% of the circumference
2x3.14x7.9=49.612 would be the entire circumference.
So...
31.5555555% of 49.612=15.6554 cm